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Readhead et al. Neuron 2018

Host-Virus 
interaction networks 
in AD identify 
numerous potential 
therapeutic targets 
related to immune 
activation



miR-155 is suppressed by HHV-6A, a regulator of preclinical 
and clinical AD networks

Readhead et al. Neuron 2018



miR-155 is suppressed by HHV-6A, a regulator of preclinical and clinical AD 
networks and alters β-amyloid plaque and oligomer formation

Readhead et al. Neuron 2018



Target
TQ

8 month-old 

Behavior: 

Barnes Maze 

Learning	Latency	to	FIND	the	hidden	zone

**
*

Constitutive	absence	of	miR-155	in	APP/PSEN1	mice	improves	
learning	and	memory	performances	in	Barnes	maze	test

Unpublished work in progress
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Absence of mir-155 mice ameliorates synaptic plasticity 
defects in APP/PSEN1 mice But induces defect of synaptic 

plasticity in WT mice

Unpublished work in progress
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Compound 1 
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.

.

.

.

.

Downregulates 
TYROBP

Identify chemogenomic 
enrichments

a bi

c

Predicted Targets Name

CHRND cholinergic	receptor,	nicotinic,	delta	(muscle)
RIPK1 receptor	(TNFRSF)-interacting	serine-threonine	kinase	1

KCNN2 potassium	intermediate/small	conductance	calcium-activated	
channel,	subfamily	N,	member	2

KYNU kynureninase
CCR8 chemokine	(C-C	motif)	receptor	8
CHKA choline	kinase	alpha
ENPEP glutamyl	aminopeptidase	(aminopeptidase	A)
SELP selectin	P	(granule	membrane	protein	140kDa,	antigen	CD62)
ADRA1B adrenoceptor	alpha	1B
CTSD cathepsin	D
AOC3 amine	oxidase,	copper	containing	3

Compound N

compound ATC	Level	3

thioguanosine ANTIMETABOLITES
clorgiline
methapyrilene ANTIHISTAMINES	FOR	SYSTEMIC	USE
estradiol ESTROGENS
procainamide ANTIARRHYTHMICS,	CLASS	I	AND	III
apigenin
atropine BELLADONNA	AND	DERIVATIVES,	PLAIN
minaprine ANTIDEPRESSANTS
clemizole
salsolinol
luteolin
moxisylyte PERIPHERAL	VASODILATORS

alfuzosin DRUGS	USED	IN	BENIGN	PROSTATIC	
HYPERTROPHY

tranylcypromine ANTIDEPRESSANTS

vinpocetine PSYCHOSTIMULANTS,	AGENTS	USED	FOR	ADHD	
AND	NOOTROPICS

Top CMAP compounds predicted to upregulate TYROBP

compound ATC	Level	3

myosmine

imatinib OTHER	ANTINEOPLASTIC	AGENTS

benzathine	benzylpenicillin BETA-LACTAM	ANTIBACTERIALS,	PENICILLINS

diphenylpyraline ANTIHISTAMINES	FOR	SYSTEMIC	USE

SC-58125

lasalocid

methyldopate ANTIADRENERGIC	AGENTS,	CENTRALLY	ACTING

harpagoside

ketotifen ANTIHISTAMINES	FOR	SYSTEMIC	USE

cloxacillin BETA-LACTAM	ANTIBACTERIALS,	PENICILLINS

Top CMAP compounds predicted to downregulate TYROBP

Drug targets enriched in compounds that regulate TYROBP

bii

TYROBP repurposing use case

Unpublished work in progress

http://cgea.dudleylab.org



Symbol Name Notes

CHRND cholinergic	receptor,	nicotinic,	delta	(muscle)

RIPK1 receptor	(TNFRSF)-interacting	serine-threonine	kinase	1 Mediates	AB	induced	TNF	production	by	
microglia	in	vitro	(Zhou,	2014	for	review)

KCNN2 potassium	intermediate/small	conductance	calcium-activated	
channel,	subfamily	N,	member	2

KYNU kynureninase

CCR8 chemokine	(C-C	motif)	receptor	8 Monocyte	chemotaxis	and	localization	of	
activated	T-cells

CHKA choline	kinase	alpha
ENPEP glutamyl	aminopeptidase	(aminopeptidase	A)
SELP selectin	P	(granule	membrane	protein	140kDa,	antigen	CD62)
ADRA1B adrenoceptor	alpha	1B
CTSD cathepsin	D Risk	gene	for	AD	(Schuur,	2011)
AOC3 amine	oxidase,	copper	containing	3

Compounds that modulate TYROBP are 
enriched for drug targets that link to AD

* Targets enriched (FDR < 0.1) in CMAP compounds ranked according to 
TYROBP expression Unpublished work in progress



Symbol Name logFC FDR

Amhr2 anti-Mullerian hormone type 2 receptor 3.60 3.52e-08
Sp1 trans-acting transcription factor 1 -0.90 4.25e-08
Pfn1 profilin 1 0.42 2.84e-03
Ppp1r9b protein phosphatase 1, regulatory subunit 9B 0.26 5.02e-03
Mrps34 mitochondrial ribosomal protein S34 0.44 8.35e-03
Ptms parathymosin 0.40 1.05e-02
Hist2h4 histone cluster 2, H4 0.56 1.05e-02
Hepacam hepatocyte cell adhesion molecule 0.53 1.05e-02
Hnrnpa0 heterogeneous nuclear ribonucleoprotein A0 0.31 1.05e-02
Hnrnph3 heterogeneous nuclear ribonucleoprotein H3 0.74 1.05e-02

a

APP/PSEN1 x SP1-KO vs. APP/PSEN1 RNA-sequencing 
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  SP1 and Aβ42  are associated 
  SP1 and Aβ42-genes are associated 
  SP1 associated with Aβ42-genes | Aβ42 
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?
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Symbol Name CIT 
(FDR)

Cor with 
SP1 dosage

Cor with 
Aβ42

Ppp1r9b protein phosphatase 1, regulatory subunit 9B 9.99e-04 -0.71 0.71
Lrrk2 leucine-rich repeat kinase 2 9.99e-04 0.69 -0.67
Mettl7a1 methyltransferase like 7A1 9.99e-04 0.63 -0.76
Slc25a25 solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 25 9.99e-04 0.73 -0.64
Edrf1 erythroid differentiation regulatory factor 1 9.99e-04 0.63 -0.80
Chd3 chromodomain helicase DNA binding protein 3 9.99e-04 -0.63 0.59
A230050P20Rik RIKEN cDNA A230050P20 gene 9.99e-04 -0.71 0.58
Lgals9 lectin, galactose binding, soluble 9 9.99e-04 -0.71 0.58
Nbas neuroblastoma amplified sequence 2.00e-03 0.72 -0.68
Tmem191c transmembrane protein 191C 2.00e-03 -0.78 0.64

c

d

b



Synthetic small molecules have also 
been employed to detect G4s. A derivative 
of PDS called PDSα has enabled the 
nuclear detection of G4s by bio-orthogonal 
ligation of a fluorophore to the ligand 
after formaldehyde fixation of cells13. 
PDSα staining significantly colocalizes 
with the G4-helicase petite integration 
frequency protein 1 (PIF1) in U2OS 
osteosarcoma cells, which is consistent 
with processing of G4 structures by PIF1 
in human cells13. Similarly, the use of the 
intrinsically fluorescent G4 ligands BMVC 
and DAOTA-M2 to visualize G4s suggests 
a higher G4 prevalence in some cancer cell 
lines than in normal cells14,15. These studies 
complement earlier work that visualized 
the accumulation of a radiolabelled 
small-molecule G4 ligand at telomeres 
in human cells16.

Probes that bind to specific DNA 
structures can alter the intrinsic stability of 
those structures by the very act of binding, 
regardless of whether they are antibodies 
or small molecules. Thus, probe-based 

second sequencing reaction by a precipitous 
reduction in sequencing data quality 
compared with that from the first sequencing 
run. G4-seq has identified more than 700,000 
G4s in the human genome; the majority 
(70%) of these either comprise G-tracts that 
are interrupted by non-guanine sequences 
and are predicted to form bulges, or comprise 
extra-long loops, which precludes prediction 
of their existence by earlier algorithms4 
(for example, (G≥3N1–7G≥3N1–7G≥3N1–7G≥3)). 
Together with other studies6, these findings 
suggest that the variety and number of 
potential G4s is greater than envisaged 
originally. The G4-dependent polymerase-
stalling sequences are enriched in gene 
regulatory regions that include promoters, 
5ʹ  untranslated regions and splicing sites, and 
are also overrepresented in cancer-related 
genes and in regions of somatic copy number 
alteration (SCNA) in cancer genomes18.

A number of G4 prediction algorithms 
are now available that vary considerably 
in the G-tract sequence, loop composition 
and the types of G4s that they capture. 
However, although computational 
predictions coupled with G4-seq provide a 
framework for understanding the potential 
for G4 structure formation in genomes, 
it is important to map G4 DNA formation 
in situ. A step towards this goal is the use of 
G4 structure-specific antibodies as probes 
for a G4-specific ChIP–seq (G4 ChIP–seq; 
FIG. 2f). An early study mapped the sites of 
DNA double-strand breaks (DSBs) that were 
induced by PDS in immortalized human 
MRC5-SV40 fibroblasts by ChIP–seq of 
fixed chromatin using an antibody specific 
for a DSB marker13. A notable enrichment 
of DSBs was observed in specific genomic 
regions that are rich in computationally 
predicted G4 motifs, which is consistent with 
binding of the G4 ligand to G4 structures 
and a causative role for G4 binding by 
ligands in DSB formation13.

A recent study used BG4 to map 
endogenous G4 structures by G4 ChIP–
seq of fixed chromatin from normal 
human epidermal keratinocytes (NHEKs) 
and from spontaneously immortalized, 
precancerous HaCaT keratinocytes17. 
In this study, ~10,000 G4s were detected 
in HaCaT cells, whereas ~1,000 G4s were 
detected in NHEK cells, which is only 
~1% of those identified by G4-seq and 
predicted by G4 prediction algorithms. 
This suggests that G4 structure formation 
is mostly suppressed in chromatin, possibly 
owing to chromatin- associated and other 
proteins that control the formation of 
DNA structures. Most G4s are observed in 

observations of natural biological 
dynamics (for example, during the cell 
cycle)8,9 — especially when combined with 
perturbation experiments (for example, of 
key enzymes)9,10,17 — are helpful to visualize 
changes that are unlikely to be attributed to 
the effect of probe binding, as stabilization of 
G4s that is caused directly by the binding 
of probes would be independent of the cell 
cycle or biological perturbations.

Genomic mapping. A recently developed 
method that combines G4-dependent DNA 
polymerase stalling and next-generation 
sequencing (G4-seq) was used to obtain 
a genome-wide map of G4 structures in 
purified, single-stranded human DNA18. 
In G4-seq, genomic DNA isolated from 
cells is first sequenced under conditions 
that do not favour G4 structure formation, 
followed by resequencing of the same DNA 
fragments under conditions that stabilize G4 
structures, such as the addition of either K+ 
or PDS (FIG. 2e). G4-dependent polymerase 
stalling is detected at specific sites during the 
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Nature Reviews | Molecular Cell Biology

Figure 1 | G-quadruplex structures. G-quadruplex (G4) structures can be generated from one DNA 
strand (unimolecular structures) or from multiple DNA strands that come together (for example, bi- or 
tetramolecular structures). G4 structures can be classified by the orientation of the strands: parallel 
G4s have the same strand orientation within the structure, whereas antiparallel G4s have alternating 
strand orientations. a | Structural (left) and schematic (right) representations of a G‑tetrad that makes 
up the core of G4 structures, which are stabilized by coordination of an alkali cation (orange). 
b | Schematic representation of a parallel unimolecular G4. c | Schematic representation of a parallel 
tetramolecular G4. d | Schematic representation of an antiparallel unimolecular G4 structure. 
e | Schematic representation of an antiparallel unimolecular G4 structure that contains a bulge, which 
is caused by a discontinuity in a G-tract.
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G-quadruplex secondary structures associate with normal 
gene regulatory activity and viral replication

Artusi et al. Nucleic Acids Research, 2016, Vol. 44, No. 21

Robert Hänsel-Hertsch. et al. Molecular Cell Biology 2018 
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Figure 1: Multiomic evaluation of Alzheimer’s Disease associated virome
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replication28. During this step they likely control both viral replication itself and other key processes of the infec-
tion, with consequent dramatic effect when they are stabilized by c-exNDI. In fact, viral replication was here 
shown to be the step targeted by c-exNDI, which strongly points to the compound G4-based mechanism of action 
on the HSV-1 G4s. ii) The higher affinity of c-exNDI for HSV-1 G4s vs telomeric G4s. These are the most abun-
dant cellular G4s in the infected cell: their lack of optimal recognition by the compound is likely the main reason 
for the observed low cellular toxicity at antiviral effective doses (Fig. 5).

Impairment of viral replication led to the decrease of viral genes in all phases of the viral life cycle. This effect 
is shared between c-exNDI and ACV36. We have previously shown that the general G4 ligand, BRACO-19, mainly 
decreased L viral genes27. This discrepancy may be due to the lower affinity of BRACO-19 for HSV-1 G4s and 
lower antiviral activity (IC50 in the low micromolar range)27 which would result in observable inhibition only of 
genes temporally more closely influenced by inhibition of viral replication. In contrast, in the case of c-exNDI 
and ACV, their potent effect on the HSV-1 genome is likely sensed at a more extended level. There is also the 
fascinating possibility that c-exNDI reacts with additional G4s, such as those in key regulatory IE and E genes; in 
fact, besides the extended G4 repeats in the terminal and inverted repeats27, less extended but stable G4s struc-
tures are also distributed throughout the HSV-1 genome and embedded in the promoter and coding sequences 
of fundamental genes27.

The unique mechanism of action of c-exNDI makes it suitable for treatment of HSV-1 strains resistant to 
current therapies; for instance, the emergence of ACV resistant strains has long created an obstacle for the treat-
ment of HSV-138. Even though c-exNDI has a less wide therapeutic window than ACV, it is active at nanomolar 
concentrations, a promising feature for its prospect development as anti-herpetic drugs. Since the HSV-1 infec-
tion is a common illness associated to immunosuppression, the impact of our data extends to AIDS, cancer and 
transplanted patients.

Methods
Cells and viruses. Vero cells (Sigma-Aldrich, Saint Louis, USA) were grown in DMEM supplemented with 
10% FBS and 1X PenStrep antibiotic (Gibco, Life Technologies, Monza, Italy). HSV-1 strain F was a kind gift of B. 
Roizman (University of Chicago, Illinois, USA). Recombinant HSV-1 expressing VP16-GFP (HSV-1 [V41]) was 
kindly provided by Peter O’ Hare (Imperial College, London, UK).

Oligonucleotides and compounds. All oligonucleotides and primers were from Sigma Aldrich (Milan, 
Italy), Table S1. The G4 ligand c-exNDI was synthesized and provided by Prof. M. Freccero (University of Pavia, 
Italy). The control compound acyclovir (ACV) was purchased from Sigma Aldrich (Milan, Italy).

Figure 5. Scheme of the proposed c-exNDI mechanism of anti-HSV-1 activity.

Callegaro et al. Scientific Reports | 7: 2341

A core extended naphtalene diimide G-quadruplex ligand potently inhibits 
herpes simplex virus 1 replication



	

Defining the “opposite phenotype” using 
Generative Adversarial Networks (GAN)

Unpublished work in progress



• On	average	4	repeats	per	treatment	

• 6	images	form	each	repeat	

• 10~50	cells	from	1	images	

• 2	TB	of	image	patches	(64x64)
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Data source: drug-treated image “patches”

Cell Painting Assay data from Bray et al. Gigascience. 2017 Dec 1;6(12):1-5.



	

Using a conditional GAN to model high-
throughput imaging data

Unpublished work in progress
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