MAYO CLINIC

Comparative Multi-omics for Generating New Disease Insights and Novel Target Discovery

Nilüfer Ertekin-Taner, M.D., Ph.D. Professor of Neurology and Neuroscience Mayo Clinic Florida

NIA-AA Symposium Enabling Precision Medicine for Alzheimer's Disease Through Open Science July 19th, 2018

02016 MFMER | slide-1

Acknowledgements

Ertekin-Taner Lab

Mariet Allen* Minerva Carrasquillo* Xue Wang* Thuy Nguyen Sarah Lincoln **Kim Malphrus Joseph Reddy** Samantha Strickland **Tulsi Patel Olivia Conway Helene Moral**

> Jez Burgess Lili N'songo Michaela Kachadoorian Joanna Siuda Morgane Corda Jenny Bredenburg Nji Nijkem

MAYO CLINIC

Jens Watzlawik Charlotte Ho Xin Que

Neuroscience/ Neurology

Steven G. Younkin Dennis Dickson Neil Graff-Radford Ronald C. Petersen

Health Sciences Research

Yan Asmann Julia Crook Dan Serie

Research IT

Curt Younkin Andy Cook

AMP-AD U01 University of Florida Todd Golde

Jada Lewis Paramita Chakrabarty Yona Levites

Institute for Systems Biology Nathan Price Cory Funk Hongdong Li

Tom Beach (Banner)

M²OVE-AD RF1 Guojun Bu Kejal Kantarci Alfredo Quiñones-Hinojosa

Model: From Genomics to Molecular Mechanisms

Aims: AMP-AD U01 AG046193

Original Aim 1:To detect transcript alterations in innate immunity gene in mice and humansRNAseq human and mice brainsDifferential expressionProtein/Nanostring validation-Expression quantitative trait loci (eQTL).	 Original Aim 2: To assess conferred by variants immunity genes from Test eQTL for effects of -Functionally annotate A variants for effects on gexpression. Transcription factor net 	ss AD risk in innate n Aim 1. n AD risk AD risk gene tworks.	Original Aim 3: To manipulate innate immune states in vivo. -rAAV based genetic manipulation in mice and cells. -Evaluate Aß, tau, neurodegeneration outcomes in model systems.	Original Aim 4: To determine outcome of gene manipulation in wild type mice. Behavioral studies in nontransgenic mice.
AD: AB, tau, neurodegeneration PSP: tau, neurodegeneration PA:AB Control: No pathology Temporal Cortex Cerebellar Cort	CRINDS: A8 PS1/APP: A8 TgR4510: tau, neurodegener- ation Porebrain Spinal Cord	Patho Regio Temp Cell o Differ Integ variar	ologic specificity (Tau vs. Amy onal specificity (CER vs. TCX) ooral change (Mouse expressi composition dependent vs. no rential expression, intron rete rative –omics analysis (expre nts, protein)	yloid), on) ot ntion, networks ssion, genetic
Diagnosis AD PSP Pathologic Aging Control	Pathology nyloid beta Tau yes yes no yes yes no no no Tau/ND		Complement Pathway Cfi CfH Cdh Cdh Serping1 SPICE* Clatifi Cla	t Ligands Receptors 1,5,6,8,9 2,4,5,9* 0A8 0A9 CFF Superfamily & Decoy Receptors Tgfb1-3 sCripto* Tgfa sACVR2* Bmp2,4,6,7 sEndoglin* Gdf1,5,10,11 sTgfbr1-3* Inha. Inhbb sBmp12* Bdnf, Manf, sCD109* Smad6,7 Chemokines & Decoy Receptors ccl2-5 cxcl8-10
MAYO CLINIC Tau/ND			SPdcd1* Other From Data Fc II1B Domains II4 human slgG1,2,3,4 II6 II10	cx3cl1 darc ⁴ M3* 5 & D6* ptors II7 fasL Tnfs11 sTNFR1* Slide-4

Approach: Target Discovery

Todd Golde, UF

Data Generation

Data Analysis

ov Recentor

Human –Omics Data

Data Deposition

	Directory	Study	Data Type	Tissue	Dx Group	N	Synpase ID	
	MCADGS	Mayo LOAD GWAS	Genotypes/Covariates		AD, Con, nAD	2099	syn3157238	ך ב ר
	MCADGS	MayoeGWAS	Array expression/Covariates	CBE	AD, nAD	374	syn3157225	at
	MCADGS	MayoeGWAS	eQTL results (cis)	CBE	AD, nAD	374	syn3157249	ure
an	MCADGS	MayoeGWAS	Array expression/Covariates	TCX	AD, nAD	399	syn3157225	S
E	MCADGS	MayoeGWAS	eQTL results (cis)	TCX	AD, nAD	399	syn3157249	⊢ĕ
퀴	MCADGS	Mayo Pilot RNAseq	Gene/Transcript counts, Covariates	TCX	AD	96	syn3157268	l fi
	MCADGS	Mayo Pilot RNAseq	Gene/Transcript counts, Covariates	TCX	PSP	96	syn3157268	C
	Mayo RNAseq Study	Cerebellum	Gene/Transcript counts, Covariates	CBE	AD, PSP, PA, Con	276	syn5049298	Dat
	Mayo RNAseq Study	Temporal Cortex	Gene/Transcript counts, Covariates	TCX	AD, PSP, PA, Con	275	syn3163039	نف
	Mayo RNAseq Study	Path Aging	Gene/Transcript counts, Covariates	TCX	PA	41	syn7344223	
اھ	Tau and APP ms	APPPS1	Gene/Transcript counts, Covariates	Forebrain	TG/NonTG	40 (various ages)	syn3435792	
N N	Tau and APP ms	TgCRND8	Gene/Transcript counts, Covariates	Forebrain	TG/NonTG	88 (various ages)	syn3435792	
ō	Tau and APP ms	P301L tau (JNPL3)	Gene/Transcript counts, Covariates	Spinal Cord	TG/NonTG	24 (various ages)	syn3157183	
2	Tau and APP ms	rTg4510	Gene/Transcript counts, Covariates	Forebrain	TG/NonTG	36 (various ages)	syn3157183	

Data uploaded to AMP-AD Knowledge portal on Synapse by the Mayo/UF/ISB team. MCADGS = Mayo Clinic Alzheimer's Disease Genetics Studies; PA = pathologic aging, Con = Pathology free control; nAD = non Alzheimer's pathology

Outcomes

- <u>Conserved brain myelination networks are altered in AD and PSP</u> (<u>Allen et al., Alzheimer's and Dementia, 2017</u>). - <u>Comparative -omics</u>, <u>mechanism, novel targets</u>.
- An intronic variant at the TREM locus is associated with higher brain TREM2 and TREML1 levels and resides in a TF binding site (Carrasquillo et al., Alzheimer's and Dementia, 2016). - Omics integration, directionality, mechanism.
- Many AD candidate risk genes have strong eQTL and/or differential expression in brain (Allen et al, Neurology Genetics 2015, 2017; Ridge et al., Genome Medicine, 2017; Mukherjee et al., Alzheimer's and Dementia, 2017).
- AD risk genes *PLCG2, ABI3* and *TREM2* have higher levels in AD brains, Aß models and reside in immune networks (*Sims et al., Nature Genetics, 2017*).
- Modulation of innate immunity proteins influences Aß and tau pathophysiology (*Chakrabarty et al., Neuron, 2015; Li et al., FASEB, 2015*).
- Differentially expressed genes/pathways in AD vs. other diagnoses are enriched for immune pathway genes.
- Immunity co-expression networks are enriched for AD risk genes.

Comparative Multi-omics and Convergent Neurodegenerative Disease Mechanisms:

Myelination

Identification of Altered Myelination Networks in AD and PSP:

A Comparative Transcriptome Analysis

Alzheimer's تئ Dementia

Alzheimer's & Dementia 🔳 (2017) 1-15

Featured Article

Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases

Mariet Allen^{a,1}, Xue Wang^{b,1}, Jeremy D. Burgess^a, Jens Watzlawik^a, Daniel J. Serie^b, Curtis S. Younkin^c, Thuy Nguyen^a, Kimberly G. Malphrus^a, Sarah Lincoln^a,
Minerva M. Carrasquillo^a, Charlotte Ho^a, Paramita Chakrabarty^d, Samantha Strickland^a, Melissa E. Murray^a, Vivek Swarup^e, Daniel H. Geschwind^e, Nicholas T. Seyfried^{f,g},
Eric B. Dammer^f, James J. Lah^g, Allan I. Levey^g, Todd E. Golde^d, Cory Funk^h, Hongdong Li^h, Nathan D. Price^h, Ronald C. Petersenⁱ, Neill R. Graff-Radford^j, Steven G. Younkin^a, Dennis W. Dickson^a, Julia R. Crook^b, Yan W. Asmann^b, Nilüfer Ertekin-Taner^{a,j,*}

Comparative Transcriptome Analysis: Rationale

Comparative transcriptome analysis of distinct neurodegenerative diseases can uncover disease pathways that are *unique* or *common* to these diseases.

- AD ≠ PSP <u>AND</u> [(△AD vs. Con) ≠ (△PSP vs.Con)] →
 uniquely perturbed pathways
- [(△AD vs. Con) ~ (△PSP vs. Con)] →
 commonly perturbed pathways

Diagnostic Groups

Diagnosis	Pathology					
Diagnosis	Amyloid beta	Tau				
AD	yes	yes				
PSP	no	yes				

Alzheimer's Disease (AD)

- Plaques (Aβ)+Tangles (tau). Dementia: Memory,
 - language, others.
 - APP, PSEN1, PSEN2
 - APOE ε4
 - 20 GWAS loci genes
 - TREM2, PLD3

Progressive Supranuclear Palsy (PSP)

(Dickson et al,

2007)

- Tangles+ tau-positive glial lesions.
- Parkinsonian disorder: Falls, eye movement.
 - MAPT (H1 haplotype)
 - 6 other GWAS loci (MOBP etc.)

Comparative Transcriptome Analysis: Approach

Discovery and Replication Cohorts

	M	ayo Clinic eGV	Mayo Clinic RNAseq					
Transprintomo profiling	Temporal C	ortex (TCX)	Cerebell	um (CER)	Temporal Cortex (TCX)			
	AD PSP		AD	PSP	AD	PSP	Control	
N	181	97	173	96	80	82	76	
Females (%)	94 (52%)	40 (42%)	88 (51%)	37 (39%)	49 (61%)	33 (40%)	38 (50%)	
Age: Mean (SD)	74 (5.6)	72 (5.3)	73 (5.7)	72 (5.0)	83 (8.6)	74 (6.5)	84 (9.3)	
RIN: Mean (SD)	6.3 (0.8)	7.0 (1.0)	7.1 (1.0)	7.1 (1.0)	8.6 (0.6)	8.5 (0.5)	7.6 (1.0)	

<u>**Transcriptome Profiling:**</u> Multi-variable linear regression analysis in R controlled for covariates (age, sex, RIN, APOE, plate for discovery; age, sex, RIN, tissue source, flowcell for replication cohort analyses).

<u>Network Analysis</u>: Weighted Gene Co-expression Network Analysis (Langfelder&Horvath BMC Bioinform, 2008). Gene expression residuals after accounting for covariates.

Goal: Discover common and distinct dysregulated expression networks and key molecules that underlie disease pathways in AD and PSP.

Comparative Transcriptome Analysis: Cell Type Adjustment

Myelination Networks Are Up In AD vs. PSP Temporal Cortex (TCX) – Discovery Cohort

Table 1

Temporal cortex coexpression networks in the discovery cohort with significant cell type enrichment

			Cell type enrichme	ent		Disease	association	Top GO biolog	gical process	
Model	Module name	Module size	Cell type	OR	P Value	Beta	P Value	ID	Name	Enrichment P value
Simple	AD+PSPTCX17.CSsimple	213	Astrocyte	54.4	5.83×10^{-80}	0.06	3.34×10^{-1}	GO:0007399	Nervous system development	3.25×10^{-6}
	AD+PSPTCX10.CSsimple	404	Microglia	55.6	7.34×10^{-158}	0.11	7.66×10^{-2}	GO:0006955	Immune response	1.98×10^{-53}
	AD+PSPTCX21.CSsimple	153	Microglia	4.3	8.74×10^{-3}	0.12	5.09×10^{-2}	NA	NA	NA
	AD+PSPTCX1.CSsimple	2046	Neuron	9.8	1.00×10^{-100}	-0.21	5.50×10^{-4}	GO:0007268	Synaptic transmission	2.15×10^{-60}
	AD+PSPTCX14.CSsimple	314	Neuron	9.5	9.06×10^{-27}	-0.16	8.50×10^{-3}	GO:0007268	Synaptic transmission	2.93×10^{-12}
	AD+PSPTCX5.CSsimple	654	Neuron	4.9	1.06×10^{-19}	-0.29	$1.04 imes 10^{-6}$	NA	NA	NA
	AD+PSPTCX26.CSsimple	102	Neuron	7.4	2.56×10^{-6}	-0.14	$1.96 imes 10^{-2}$	GO:0098655	Cation transmembrane transport	3.55×10^{-2}
	AD+PSPTCX11.CSsimple	340	Oligodendrocyte	96.4	2.78×10^{-81}	0.27	$5.58 imes 10^{-6}$	GO:0042552	Myelination	1.03×10^{-7}
	AD+PSPTCX29.CSsimple	58	Oligodendrocyte	47.1	2.01×10^{-13}	0.32	4.43×10^{-8}	NA	NA	NA
Comprehensive	AD+PSPTCX14.CS	264	Astrocyte	31.5	1.86×10^{-59}	-0.11	6.41×10^{-2}	GO:0007399	Nervous system development	6.32×10^{-7}
	AD+PSPTCX26.CS	120	Microglia	153.6	9.19×10^{-106}	-0.17	$4.56 imes 10^{-3}$	GO:0006955	Immune response	2.72×10^{-34}
	AD+PSPTCX42.CS	41	Neuron	8.9	2.58×10^{-3}	0.12	4.38×10^{-2}	NA	NA	NA
	AD+PSPTCX27.CS	111	Neuron	10.3	8.18×10^{-12}	-0.01	8.31×10^{-1}	GO:0007268	Synaptic transmission	1.33×10^{-2}
	AD+PSPTCX16.CS	219	Neuron	6.7	7.15×10^{-13}	0.01	9.12×10^{-1}	NA	NA	NA
	AD+PSPTCX12.CS	305	Neuron	6.6	7.31×10^{-16}	0.02	7.32×10^{-1}	GO:0007268	Synaptic transmission	1.57×10^{-13}
	AD+PSPTCX8.CS	377	Neuron	7.1	5.76×10^{-22}	0.03	6.26×10^{-1}	GO:0007268	Synaptic transmission	1.51×10^{-17}
	AD+PSPTCX2.CS	752	Neuron	14.1	4.96×10^{-93}	0.08	1.97×10^{-1}	GO:0007268	Synaptic transmission	4.44×10^{-20}
	AD+PSPTCX41.CS	41	Oligodendrocyte	40.6	3.98×10^{-8}	0.06	3.02×10^{-1}	NA	NA	NA
	AD+PSPTCX40.CS	44	Oligodendrocyte	20.1	2.29×10^{-3}	0.20	$8.00 imes 10^{-4}$	NA	NA	NA
	AD+PSPTCX10.CS	308	Oligodendrocyte	81.6	1.70×10^{-72}	0.19	$1.43 imes 10^{-3}$	GO:0042552	Myelination	2.37×10^{-9}

- TCX co-expression networks enriched for oligodendrocyte transcripts and myelination related biological processes are higher in AD vs. PSP.
- This association persists even when adjusting for five CNS cell-specific transcripts (surrogate for cell type composition).

Myelination Networks Are Up In AD vs. PSP Temporal Cortex (TCX) – Discovery Cohort

Simple Model

Comprehensive Model

Myelination Networks Are Up In AD vs. PSP Down in PSP vs. Control Down in AD vs. Control Temporal Cortex (TCX) – Replication Cohort

Table 3

Temporal cortex coexpression networks in replication cohort with significant oligodendrocyte-specific gene enrichment

Model	Diagnostic comparison	Module name	Module size	Number of oligodendrocyte genes in module	Oligodendrocyte enrichment OR	Oligodendrocyte enrichment P value	Disease association beta	Disease association P value
Simple	AD + Con	AD+ConTCX10.CSRSsimple	398	15	5.95	2.45×10^{-7}	-0.094	9.19×10^{-1}
_		AD+ConTCX4.CSRSsimple	924	73	40.48	2.44×10^{-63}	-0.008	2.44×10^{-1}
	AD + PSP	AD+PSPTCX3.CSRS _{simple}	1542	93	125.11	6.12×10^{-80}	0.279	3.31×10^{-4}
	PSP + Con	PSP+ConTCX5.CSRS _{simple}	737	73	52.71	9.60×10^{-69}	-0.221	$5.19 imes 10^{-3}$
		PSP+ConTCX12.CSRS _{simple}	253	15	9.68	5.35×10^{-8}	-0.176	$2.74 imes 10^{-2}$

- TCX myelination network expression is replicably higher in AD vs. PSP.
- This appears to be due to greater reduction in myelination network gene levels in 'PSP vs. Control' than 'AD vs. Control'.

Myelination Networks Are Up In AD vs. PSP Down in PSP vs. Control Down in AD vs. Control Temporal Cortex (TCX) – Replication Cohort

Table 3

Temporal cortex coexpression networks in replication cohort with significant oligodendrocyte-specific gene enrichment

Model	Diagnostic comparison	Module name	Module size	Number of oligodendrocyte genes in module	Oligodendrocyte enrichment OR	Oligodendrocyte enrichment P value	Disease association beta	Disease association P value
Simple	AD + Con	AD+ConTCX10.CSRSsimple	398	15	5.95	2.45×10^{-7}	-0.094	9.19×10^{-1}
		AD+ConTCX4.CSRSsimple	924	73	40.48	2.44×10^{-63}	-0.008	2.44×10^{-1}
	AD + PSP	AD+PSPTCX3.CSRS _{simple}	1542	93	125.11	6.12×10^{-80}	0.279	3.31×10^{-4}
	PSP + Con	PSP+ConTCX5.CSRS _{simple}	737	73	52.71	9.60×10^{-69}	-0.221	$5.19 imes 10^{-3}$
		PSP+ConTCX12.CSRSsimple	253	15	9.68	5.35×10^{-8}	-0.176	$2.74 imes10^{-2}$
Comprehensive	AD + Con	AD+ConTCX7.CSRS	526	17	5.15	4.49×10^{-5}	-0.228	$4.12 imes 10^{-3}$
		AD+ConTCX24.CSRS	65	15	46.61	9.42×10^{-17}	-0.143	7.40×10^{-2}
		AD+ConTCX26.CSRS	52	5	14.81	6.03×10^{-3}	-0.025	7.54×10^{-1}
		AD+ConTCX2.CSRS	886	56	19.35	5.81×10^{-38}	-0.042	6.05×10^{-1}
	AD + PSP	AD+PSPTCX2.CSRS	946	49	13.44	4.62×10^{-28}	0.009	9.07×10^{-1}
		AD+PSPTCX8.CSRS	628	25	7.02	5.42×10^{-10}	0.003	9.66×10^{-1}
		AD+PSPTCX26.CSRS	69	15	43.23	2.84×10^{-16}	-0.050	5.29×10^{-1}
	PSP + Con	PSP+ConTCX2.CSRS	1291	74	29.01	5.46×10^{-52}	-0.100	2.12×10^{-1}
		PSP+ConTCX22.CSRS	112	14	21.9	1.35×10^{-11}	-0.064	4.26×10^{-1}

• In comprehensive model for Replication Cohort, trends remain the same but significance reduced for some comparisons (over-correction?).

Myelination Networks Harbor AD and PSP Risk

Myelination Network Perturbations Are Validated at Protein Level

A		в		С		D		Е			
	PSP Control Rep.		PSP Control Rep.		PSP Control Rep.		PSP Control Rep.		PSP Rep. Ctrl.		
	12345678910		1 2 3 4 5 6 7 8 9 10		12345678910	-	12345678910		12345678		
25 kD - 20 kD -						L				PLP	Brotoia
37 kD -										CNP	DED
15 kD —										MBP	CNP
25 kD -						ſ				MOG	MBP
20 kD -				11						PLLP	MOG
25 kD —				1		Г				NORD	PLLP
2510						-		_		MOBP	MOBP183
37 kD —				1						Appoptosin	MOBP81
75 kD			the fact but has been bed bed and		bebebebebebebebebebe					BACE1	Appoptosin
100 kD -			Warter bei bei ber ber bet bet bet bet	11		Γ			Interior Interior	400	BACE1
50 kD -										APP	APP
75 kD 50 kD -				11		Γ	王王王王王王王王王王王王		医医生生生素医	E1 (Tau)	E1 (Tau)
50 kD -				11		h				ß3-tubulin	β3-tubulin
50 kD -	Description of the operation of the			11	THE PROPERTY AND ADDRESS OF ADDRESS ADDRES	h	and the state of the second state			CEAD	GFAP
37 kD —	P. MARTIN M. B. LAND			11	THE REPORT OF CAME	Щ			Real of the second seco	GFAP	PS1
20 kD -						L				PS1	PS2
20 kD -										PS2	IBA-1
15 kD —			=						tt.:	IBA-1	
37 kD -						C				GAPDH	

		PSP vs. (Control		
		Mean	±SD		
Protein	Gene	psp	Controls	6 PSP	p value
PLP	PLP1	0.758 ± 0.355	0.94 ± 0.539	-0.338	0.056
CNP	CNP	0.902 ± 0.27	0.852 ± 0.338	-0.027	0.803
MBP	MBP	1.519 ± 1.213	1.852 ± 1.936	-0.772	0.221
MOG	MOG	1.056 ± 0.735	1.219 ± 0.794	-0.421	0.114
PLLP	PLLP	0.604 ± 0.168	0.649 ± 0.213	-0.108	0.147
MOBP183	MOBP	1.217 ± 0.487	1.178 ± 0.653	-0.01	0.963
MOBP81	MOBP	0.856 ± 0.43	0.868 ± 0.496	-0.119	0.514
Appoptosin	SLC25A38	0.54 ± 0.216	0.418 ± 0.177	0.157	0.053
BACE1	BACE1	1.534 ± 0.655	1.441 ± 0.462	0.098	0.65
APP	APP	1.557 ± 0.42	1.285 ± 0.199	0.323	0.018
E1 (Tau)	MAPT	2.108 ± 0.632	1.874 ± 0.527	0.266	0.239
β3-tubulin	TUBB3	1.383 ± 0.543	1.275 ± 0.621	0.115	0.516
GFAP	GFAP	1.075 ± 0.524	1.331 ± 0.911	-0.565	0.048
PS1	PSEN1	1.048 ± 0.328	0.938 ± 0.316	0.281	0.02
PS2	PSEN2	0.847 ± 0.341	0.835 ± 0.487	0.272	0.068
IBA-1	AIF1	1.624 ± 2.551	0.463 ± 0.318	1.076	0.136

Proteome Data of Mayo TCX Samples from Emory/UCLA (84 AD vs. 83 PSP)

Gene Name UniProt ID	Gene Symbol	log2FC.PSPvsAD	p.PSPvsAD	FDR.PSPvsAD
MBP P02686	MBP	-0.283166459	0.004054992	0.013873479
MBP H7BYR8	MBP	-0.44204852	0.006880439	0.021600988
CNP P09543	CNP	-0.230290189	0.008508914	0.025767751
MOG C9JTE0	MOG	-0.169774747	0.080079509	0.159454749
PLP1 P60201	PLP1	-0.138230067	0.19583294	0.324337773
BIN1 000499	BIN1	-0.005061693	0.881080053	0.931413656

Rigor and "External" Reproducibility

Potential Mechanisms of Myelin Dysregulation

• Hypoperfusion:

CLINIC

• Disrupted axo-myelin transmission:

MAG:PLP1 reduced and VEGF increased in AD (Love&Miners, Acta Neuropath, 2016)

Hypothetical development of axo-myelinic synapse (Micu et al., Nat Rev NSci, 2018)

• Protesostasis (Tau, Aß, α-Syn):

Neurotransmitters, inflammation:

Novel Target Discovery: Myelin

Therapeutic Hypothesis: Promoting Myelination and Oligodendrocyte Health

We and others have recently implicated oligodendrocyte and myelin dysfunction as an early event in AD (and PSP), perhaps even preceding evidence for overt neuronal dysfunction. If this is the case, promoting oligodendrocyte health and myelination may be a key target for intervention in AD (and other neurodegenerative diseases).

Mayo-UF-ISB Targets: Class Myelin- Oligodendrocyte		ADvsControl_Simple_TCX		ADvsCon_Simple_CER		AD vs Control_Comprehensiv e_TCX		/ _Comp	AD vsCon prehensive_CER		
gene symbol	Predicted therapeutic direction	Modules	GO_Module	Modules	GO_Module	Modules	GO_Module	Modules	GO_Module		
MOG	agonism	MM5	axon ensheathment	MM20	axon ensheathment	MM8	NA	MM11	axon ensheathment		
МОВР	agonism	MM10	NA	MM48	NA	MM33	NA	MM11	axon ensheathment		
SLCO1A2	unknown	MM10	NA	MM48	NA	MM8	NA	MM1	NA		
UNC5C	agonism	MM5	axon ensheathment	MM22	cell-cell signaling	MM2	NA	MM24	cell-cell signaling		
PLP1	agonism	MM5	axon ensheathment	MM20	axon ensheathment	MM2	NA	MM11	axon ensheathment		
PLLP	agonism	MM10	NA	MM48	NA	MM8	NA	MM11	axon ensheathment		
BIN1	unknown	MM5	axon ensheathment	MM1	chromosome organization	MM2	NA	MM8	NA		
Mayo-UF-ISB Targets: Class Myelin-											
Mayo-UF-IS Class M Oligoden	B Targets: Ayelin- ndrocyte	DEG Com	parison Summary	AD vs Cor	ntrol_Simple_TCX_DEG	Al Control_Si	D vs mple_CER_D EG	Control_	AD vs Comprehensive_ ICX_DEG	AI _Control 0	D vs Compreh CER_DEG
Mayo-UF-IS Class M Oligoden gene symbol	B Targets: Ayelin- ndrocyte Predicted therapeutic direction	DEG Com Consisten cy of TCX and CER	Consistency of Simple vs. Comprehensive Models	AD vs Cor FDR	ntrol_Simple_TCX_DEG	Al Control_Si I FDR	D vs mple_CER_D EG Direction	Control_	AD vs Comprehensive_ FCX_DEG Direction	AI Control_ nsive_ (FDR	D vs Compreh CER_DEG
Mayo-UF-IS Class M Oligoden gene symbol MOG	B Targets: Ayelin- ndrocyte Predicted therapeutic direction agonism	DEG Comp Consisten cy of TCX and CER No	Consistency of Simple vs. Comprehensive Models No	AD vs Cor FDR 8.68E-01	Direction	Al Control_Si I FDR 5.95E-01	D vs mple_CER_D EG Direction	Control_ FDR 8.16E-01	AD vs Comprehensive_ FCX_DEG Direction LowInAD	AI Control_ nsive_ (FDR 7.33E-01	D vs Compreh CER_DEG Directio
Mayo-UF-IS Class M Oligoden gene symbol MOG MOBP	B Targets: Ayelin- ndrocyte Predicted therapeutic direction agonism agonism	DEG Comp Consisten cy of TCX and CER No Yes	Consistency of Simple vs. Comprehensive Models No Yes	AD vs Cor FDR 8.68E-01 1.21E-01	Direction HighInAD LowInAD	Al Control_Si FDR 5.95E-01 1.50E-02	D vs mple_CER_D EG Direction LowInAD LowInAD	Control	AD vs Comprehensive_ FCX_DEG Direction LowInAD LowInAD	AI Control_ nsive_ (FDR 7.33E-01 3.17E-02	D vs Compreh CER_DEG Directio LowInAD
Mayo-UF-IS Class M Oligoden gene symbol MOG MOBP SLCO1A2	B Targets: Ayelin- ndrocyte Predicted therapeutic direction agonism agonism unknown	DEG Comp consisten cy of TCX and CER No Yes Yes	Consistency of Simple vs. Comprehensive Models No Yes Yes	AD vs Cor FDR 8.68E-01 1.21E-01 7.52E-01	htrol_Simple_TCX_DEG Direction HighInAD LowInAD LowInAD LowInAD	Al Control_Si FDR 5.95E-01 1.50E-02 9.11E-01	D vs mple_CER_D EG Direction LowInAD LowInAD	Control_ FDR 8.16E-01 7.77E-02 1.80E-01	AD vs Comprehensive_ FCX_DEG Direction LowInAD LowInAD LowInAD	AI Control_ nsive_ (FDR 7.33E-01 3.17E-02 9.67E-01	D vs Compreh CER_DEG Directio LowInAD LowInAD
Mayo-UF-IS Class M Oligoden gene symbol MOG MOBP SLCO1A2 UNC5C	B Targets: Ayelin- ndrocyte Predicted therapeutic direction agonism agonism unknown agonism	DEG Comp cy of TCX and CER No Yes No	Consistency of Simple vs. Comprehensive Models No Yes Yes Yes	AD vs Cor FDR 8.68E-01 1.21E-01 7.52E-01 6.95E-01	htrol_Simple_TCX_DEG Direction HighInAD LowInAD LowInAD HighInAD HighInAD	Al Control_Si FDR 5.95E-01 1.50E-02 9.11E-01 1.41E-01	D vs mple_CER_D EG Direction	Control	AD vs Comprehensive_ TCX_DEG Direction LowInAD LowInAD LowInAD LowInAD	AI Control_ nsive_ (FDR 7.33E-01 3.17E-02 9.67E-01 5.53E-01	D vs Compreh CER_DEG Directio LowInAD LowInAD LowInAD
Mayo-UF-IS Class M Oligoden gene symbol MOG MOBP SLCO1A2 UNC5C PLP1	B Targets: Ayelin- ndrocyte Predicted therapeutic direction agonism agonism unknown agonism agonism	DEG Comp cy of TCX and CER No Yes No No	Consistency of Simple vs. Comprehensive Models No Yes Yes Yes Yes	AD vs Cor FDR 8.68E-01 1.21E-01 7.52E-01 6.95E-01 3.25E-01	birection Direction HighInAD LowInAD LowInAD HighInAD HighInAD LowInAD HighInAD HighInAD	Al Control_Si FDR 5.95E-01 1.50E-02 9.11E-01 1.41E-01 9.28E-01	D vs mple_CER_D Direction	Control	AD vs Comprehensive_ FCX_DEG Direction LowInAD LowInAD LowInAD HighInAD HighInAD	AI Control_ nsive_ (FDR 7.33E-01 3.17E-02 9.67E-01 5.53E-01 8.68E-01	D vs Compreh CER_DEG Directio LowInAD LowInAD LowInAD LowInAD
Mayo-UF-IS Class M Oligoden gene symbol MOG MOBP SLCO1A2 UNC5C PLP1 PLLP	B Targets: Ayelin- ndrocyte Predicted therapeutic direction agonism agonism unknown agonism agonism agonism	DEG Comp cy of TCX and CER No Yes No No Yes	Consistency of Simple vs. Comprehensive Models No Yes Yes Yes Yes Yes	AD vs Cor FDR 8.68E-01 1.21E-01 7.52E-01 6.95E-01 3.25E-01 7.35E-01	htrol_Simple_TCX_DEG Direction HighInAD LowInAD LowInAD HighInAD HighInAD LowInAD LowInAD LowInAD LowInAD LowInAD LowInAD LowInAD	Al Control_Si FDR 5.95E-01 1.50E-02 9.11E-01 1.41E-01 9.28E-01 6.29E-02	D vs mple_CER_D EG Direction	Control FDR 8.16E-01 7.77E-02 1.80E-01 7.78E-01 8.17E-01 5.76E-01	AD vs Comprehensive_ CCX_DEG Direction LowInAD LowInAD LowInAD HighInAD HighInAD LowInAD	AI Control_ nsive_ (FDR 7.33E-01 3.17E-02 9.67E-01 5.53E-01 8.68E-01 9.43E-02	D vs Compreh CER_DEG Directio LowInAD LowInAD LowInAD HighInAE LowInAD

Conclusions and Implications

- Myelination networks are down in both AD and PSP, but more so in PSP.
 - Convergent pathway for multiple neurodegenerative diseases.
 - Tau-related (especially 4R), disrupted neuron-glia interaction, other?
 - Role of aging and high metabolic demand of maintaining myelin.
- Myelination networks are reproducible, validated and their alterations are unlikely to be due to cell population changes.
 - TCX is a relatively unaffected region in PSP.
 - Similar findings even after adjusting for cell populations.
 - Internal, external replications, including single cell type data.

• Myelination networks harbor AD and PSP risk genes.

- Mechanistic implications for these genes and their variants.
- Implications for (Combination) Therapy.
 - Myelin repair/remyelination.
 - Maintenance of microglial, astrocyte function (myelin debris removal)
 - APOE/lipid metabolism/cerebrovascular health

Comparative Multi-omics and Divergent Neurodegenerative Disease Mechanisms:

Innate Immunity

©2016 MFMER | slide-27

nature genetics Rare coding

Rare coding variants in *PLCG2*, *ABI3*, and *TREM2* implicate microglial-mediated innate immunity in Alzheimer's disease

We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a wholeexome microarray. In stage 2, we tested associated variants $(P < 1 \times 10^{-4})$ in 35,962 independent samples using *de novo* genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations ($P < 5 \times 10^{-8}$) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in *PLCG2* (rs72824905: p.Pro522Arg, *P* = 5.38 × 10⁻¹⁰, odds ratio (OR) = 0.68, minor allele frequency (MAF)_{cases} = 0.0059, MAF_{controls} = 0.0093), a risk variant in *ABI3* (rs616338: p.Ser209Phe, $P = 4.56 \times 10^{-10}$, OR = 1.43, MAF_{cases} = 0.011, MAF_{controls} = 0.008), and a new genome-wide significant variant in *TREM2* (rs143332484: p.Arg62His, *P* = 1.55 × 10⁻¹⁴, OR = 1.67, $MAF_{cases} = 0.0143$, $MAF_{controls} = 0.0089$), a known susceptibility gene for Alzheimer's disease. These proteinaltering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

controls using the Illumina HumanExome microarray. Data from multiple consortia were combined in a single-variant meta-analysis (Online Methods) assuming an additive model. In total, 241,551 variants passed quality control (**Supplementary Table 3**). Of these, 203,902 were polymorphic, 26,947 were common (MAF \geq 5%), and 176,955 were low frequency or rare (MAF < 5%). We analyzed common variants using a logistic regression model in each sample cohort and combined data using METAL³⁰. Rare and low-frequency variants were analyzed using the score test and data were combined with SeqMeta³¹ (**Supplementary Fig. 2**).

We reviewed cluster plots for variants showing association ($P < 1 \times 10^{-4}$) and identified 43 candidate variants (**Supplementary Table 4**), excluding known risk loci (**Supplementary Table 5**). In stage 2, we tested these for association in 14,041 LOAD cases and 21,921 controls, using genotypes derived from *de novo* genotyping and imputation (Online Methods). We carried forward single-nucleotide variants (SNVs) with genome-wide significant associations and consistent directions of effect to stage 3 where genotypes for 6,652 independent cases and 8,345 controls were imputed using the Haplotype Reference Consortium resource^{32,33} (Online Methods and **Supplementary Table 6**).

We identified four rare coding variants with genome-wide significant association signals with LOAD ($P < 5 \times 10^{-8}$) (Table 2 and Supplementary Tables 7 and 8). The first is a missense variant p.Pro522Arg (P = 5.38

Sims *et al*., 2017

Table 2 Summary of Stages 1,		incu meta	-analysis results i	1 < 0 × 10		
SNV	rs75932628		rs143332484	rs72824905	rs616338	
Chr.	6		6	16	17	
Position (bp)	41,129,252		41,129,207	81,942,028	47,297,297	
Protein variation	Arg47His		Arg62His	Pro522Arg	Ser209Phe	
Gene	TREM2		TREM2	PLCG2	ABI3	
Effect allele	Т		Т	G	Т	
Stage 1						
Ρ	3.02 × 10 ⁻¹²		3.48×10^{-9}	1.19×10^{-5}	2.16×10^{-5}	
OR	2.46		1.58	0.65	1.42	
MAF _{cases}	0.003		0.015	0.006	0.013	
MAF _{controls}	0.001		0.010	0.011	0.010	
Ν	30,018		33,786	33,786	33,786	
Stage 2						
Р	4.38×10^{-8}		3.66 × 10 ⁻⁷	1.35×10^{-4}	8.37 × 10 ⁻⁵	
OR	2.37		3.97	0.70	1.41	
MAF _{cases}	0.004		0.014	0.006	0.010	
MAF _{controls}	0.002		0.006	0.008	0.008	
Ν	35,831		3,968	35,831	35,831	
Stage 3						
Р	1.23×10^{-6}		2.45×10^{-3}	2.48×10^{-2}	1.75×10^{-2}	
OR	2.58		1.55	0.69	1.58	
MAF _{cases}	0.006		0.012	0.006	0.010	
MAF _{controls}	0.003		0.008	0.007	0.008	
Ν	14,884		15,288	15,288	14,876	
Stage 1–3 meta-analysis						
Р	5.38×10^{-24}		1.55×10^{-14}	5.38×10^{-10}	4.56×10^{-10}	
OR	2.46		1.67	0.68	1.43	
MAF _{cases}	0.004		0.014	0.006	0.011	
MAF _{controls}	0.002		0.009	0.009	0.008	
Ν	80,733		53,042	84,905	84,493	

Table 2 Summary of stages 1, 2 and 3 and combined meta-analysis results for SNVs at $P < 5 \times 10^{-8}$

Sims et al., 2017

©2016 MFMER | slide-29

Abelson Interactor Protein 3 (ABI3) Ser209Phe, rs616338

Sims *et al.*, 2017

©2016 MFMER | slide-30

Phospholipase C γ2 (*PLCG2*) Pro522Arg, rs72824905

Odds Ratio (OR)	0.68
P value	5.38x10 ⁻¹⁰
Minor Allele Frequency Cases	0.0059
Minor Allele Frequency Controls	0.0093

Sims et al., 2017

©2016 MFMER | slide-3⁻

Conclusions and Implications

- Innate immunity/microglial networks are up only in AD, but not in PSP.
 - Divergent pathway between AD vs. PSP (primary tauopathy).
 - AD (Aβ) specificity?
- Innate immunity networks are reproducible and validated though their changes are likely due to microgliosis in AD pathology-affected regions.
 - Observed only in AD vs. control, in TCX and simple model.
 - Findings disappear after adjusting for cell populations.
- Innate immunity networks harbor AD risk genes.
 - Mechanistic implications for these genes and their variants.
- Implications for Therapy.
 - Innate immunity may be a viable AD-specific target.
 - Opposite direction of risk associations between AD and PSP for some innate immunity AD risk genes may be multifactorial and should raise caution about targeting innate immunity in non-AD degenerative diseases.

AMP-AD Interactive Collaborations

- Simplified schematic depiction of the ongoing and planned collaborations with AMP-AD and other partners.
- Blue arrows: Shared samples. Green arrows: Shared data. Red arrows: Expected outcomes.
- Data generated by the teams are shown in white boxes below the relevant teams.
- This figure highlights the specific data types shared with and by our team and is not a full inventory of all data by all groups. Our team also widely shares rAAV tools and mouse brain data with all teams (not shown).

