Metabolic and Transcriptional Regulatory Network Models in Alzheimer's Disease

Building models that provide biological insights and generate novel, testable hypotheses

All models are wrong, but some are useful.

— George E. P. Box $-$

AZ QUOTES

Building a model of transcriptional regulation in the brain

- A single gene model consists of a list of transcription factors (TFs) and their footprints
- Inputs for a gene model
	- Brain-specific DHS data provides a list of putative binding sites (and TFs) that are potential regulators
	- Map between motifs and TFs
	- List of regulatory regions (GeneHancer)
	- Large RNA-seq dataset (>60 samples, can be microarray)
- Build a regression model between each individual TF and target gene using multiple LASSO approaches (and RF)

TReNA Workflow

AMP-AD Postmortem RNA-seq Brain Samples

SCIENTIFIC DATA

OPEN | Data Descriptor: Human whole **SUBJECT CATEGORIES** genome genotype and transcriptome » Neurodegeneration data for Alzheimer's and other » Genetics of the nervous system neurodegenerative diseases » Genome-wide association studies » RNA sequencing Mariet Allen^{1,*}, Minerva M. Carrasquillo^{1,*}, Cory Funk², Benjamin D. Heavner²,

Fanggeng Zou¹, Curtis S. Younkin³, Jeremy D. Burgess¹, High-Seng Chai⁴, Julia Crook², James A. Eddy², Hongdong Li², Ben Logsdon⁵, Mette A. Peters⁵, Kristen K. Dang⁵, Xue Wang³, Daniel Serie³, Chen Wang⁴, Thuy Nguyen¹, Sarah Lincoln¹, Kimberly Malphrus¹, Gina Bisceglio¹, Ma Li¹, Todd E. Golde⁶, Lara M. Mangravite⁵, Yan Asmann², Nathan D. Price², Ronald C. Petersen⁷, Neill R. Graff-Radford⁸, Dennis W. Dickson¹, Received: 8 April 2016 : Steven G. Younkin¹ & Nilüfer Ertekin-Taner^{1,8}

Available Genome-scale Models

- Models for each dataset and brain region
	- ROSMAP syn7984387
	- Mayo/UF/ISB temporal cortex syn8259337
	- Mayo/UF/ISB cerebellum syn8259326
	- MSSM frontal pole syn8281269
	- MSSM STG syn8281290
	- MSSM IFG syn8281276
	- MSSM PHG syn8281283
- Models are specific to brain region, but not cell type as RNA-seq data contains multiple cell types
	- If a gene is expressed in a single cell type, the TFs tend to be in same cell type
- **Models are mechanistic and directional**

TReNA applications

- Take advantage of the mechanistic and directional TReNA results
- Genome-scale model can be used to interpret data from other approaches
	- Functional annotation of variants (INPP5D)
	- Provide biological context (VGF)
	- TF drivers of co-expressed or differentially expressed genes
	- Network changes from drugs

INPP5D Trena Model & Disruptions

IGV READ ME trena model **SNP** TF/INPP5D xy plot **Display Genomic Region:** Row (transcription factor) selection will display: $\overline{}$ ◉ XY plot ⓒ Binding sites **Add Track:** betaRidge tf.hgnc **lassoPValue** pearsonCoeff rfScore spearmanCoeff betaSgrtLasso concordance betaLasso $\overline{}$ Motif-breaking SNPs **SP100** 0.119 2.65e-46 0.74 34.625 0.041 0.753 0.084 \blacksquare **SNP** score $\overline{2}$ SPI₁ 0.244 1.54e-48 0.748 30.945 0.058 0.752 0.275 $\sqrt{4}$ 12 TAL₁ 0.157 $4e-42$ 0.712 16.618 0.042 0.684 0.156 3 <u> Electronic de la contenenta</u> 1.2 2.4 3.6 4.8 7.2 8.4 9.6 10.8 NFATC₂ $\mathbf 0$ 0.678 16.249 $\mathbf 0$ Δ 0.636 0.028 0.697 **FIMO motif score** 5 FLI1 0.093 $2.66e-36$ 0.709 15.355 0.033 0.706 0.078 \circ $\sqrt{2}$ 12 6 LYL1 0.011 $3.34e-7$ 0.722 14.954 0.04 0.713 0.01 ______________________ 0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12 $\overline{7}$ **TFEC** 0.092 4.78e-28 0.69 12.227 0.053 0.697 0.109 Proximity ELK3 8 $\mathbf 0$ 0.687 0.643 11.872 0.013 0.672 $\mathbf 0$ \bullet 10 100 **HHEX** $\mathbf 0$ 0.908 9.316 0.024 $\mathbf 0$ 9 0.665 0.654 50 -60 10 IRF₅ $\mathbf 0$ 0.00764 0.689 5.624 0.047 0.683 0.005 SNPs near binding sites in enhancer regions

pcaMax

2.125

2.402

1.642

0.938

1.363

1.005

1.312

0.704

0.69

0.857

0.618

0.627

0.555

0.442

0.503

0.436

 0.45

0.376

0.36

0.414

INPP5D Trena Model & Disruptions

INPP5D Trena Model & Disruptions

INPP5D Trena Model & Disruptions

Agora nominee: VGF

- Nominated by multiple groups in AMP-AD
- Expressed in the adult brain in areas associated with higher cognitive functions, such as the hippocampus, the neocortex and the entorhinal cortex
- Regulates neural activity and survival
- Involved in energy balance
- TLPQ-62 regulates memory formation and depression
- TLPQ-21 (subset of TLPQ-62) binds to C3aR1 and has anti-obesity functions
- Downregulated in CSF of AD patients (potential biomarker)

Antidepressants Antidepressants **Antidepressants** Exercise Exercise Exercise **BDNF BDNF BDNF** $IGF-1$ TrkB VGF IGER Ras Grb₂ Akt Akt **ERK Nucleus** Downstream effects $Syn-1$ **BDNF** CRE

Levi, A., et al., Cell Mol Neurobiol, 2004. 24(4): p. 517-33. Thakker-Varia, S. and J. Alder, Behav Brain Res, 2009. 197(2): p. 262-78. Lin, W.J., et al., J Neurosci, 2015. 35(28): p. 10343-56. Fairbanks, C.A., et al., Pain, 2014. 155(7): p. 1229-37. Hannedouche, S., et al., J Biol Chem, 2013. 288(38): p. 27434-43. Cero, C., et al., Structure, 2014. 22(12): p. 1744-1753. Cero, C., et al., Mol Metab, 2017. 6(1): p. 148-158. Hendrickson, R.C., et al., PLoS One, 2015. 10(8): p. e0135365.

$\text{TReNA model of VGF}$ pr $\text{Disease Markets}\atop \text{http://dx.doi.org/10.1155/2014/123165}$

• NEUROD6

- Developmental gene involved differentiation, antioxidant response and mitochondrial function
- DLX1 & SMAD4
	- $-$ Known effectors of TGF- β signaling

Research Article

RNA-Seq Data Mining: Downregulation of NeuroD6 Serves as a Possible Biomarker for Alzheimer's Disease Brains

Jun-ichi Satoh, Yoji Yamamoto, Naohiro Asahina, Shouta Kitano, and Yoshihiro Kino Research Article

⊥ factor PMCID: PMC2874871 ASN Neuro. 2010; 2(2): e00034 Published online 2010 May 24. Prepublished online 2010 Apr 22. doi: 10.1042/AN20100005 bioenerge

The normalization has been been half a transmitted factor Normal Confers lls to the Dix1 and Dix2 Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis

Ramon Pla, Amelia Stanco, MacKenzie A Howard, Anna N Rubin, Daniel Vogt, Niall Mortimer, Inma Cobos, Gregory Brian Potter, Susan Lindtner, James D Price Alex S Nord, Axel Visel, Christoph E Schreiner, Scott C Baraban, David H Rowitch

Evf2IncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of

chromatin remodeling

Protection of TGF-β1 against Neuroinflammation and Neurodegeneration in AB_{1-42} -Induced Alzheimer's Disease Model Rats

Ji Smad4 is essential for directional progression from committed

^{Pt} neural progenitor cells through neuronal differentiation in the postnatal mouse brain

ark.

ctivation of

Transcriptional Regulation of Consensus Modules

 $TCXhluA$ -IFGvellow- $STGhluA$

Consensus co-expression modules assessed using the 3 large RNA-seq brain transcriptomic data sets (several brain regions)

- Module prefix represents the dataset from which the base set of genes were evaluated
- Modules are not exclusive with many overlaps
- Expression levels were adjusted for other covariates
- Enrichments are for DEGs within coexpression modules, comparing AD to control

Ben Logsdon

Enrichment for AD DEG Signatures

Transcriptional Regulation of Consensus Modules

TCXgreen module contains 2,766 genes and 1,383 DEG

Transcriptional Regulation of Consensus Modules

TCXbrown module contains 1,851 genes and 601 DEG

AD Endophenotype

Summary

- Transcriptional regulatory networks produce mechanistic and directional gene models that can be useful for identifying key TFs for individual genes
- Models can be used to inform biological hypotheses
- Models can be integrated with genomic data, enabling functional annotation of variants
- Models can be used to identify key TF drivers of DEGs and coexpressed networks

Genome-scale metabolic models (GSMs)

- **Recon3** : most comprehensive and updated human metabolic reconstruction **Data IOCYC** Model reconstruction **Model reconstruction** Reactions 13,543 $\alpha = 1$ Genes | 3,288 (unique) $\begin{array}{ccccccccccccc} \cup & 0 & 0 & 0 & 1 & 5 \end{array}$ $\mathbf{I}_{\text{inv}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Metabolites | 4,140 (unique) Compartments 9 (Cytoplasm, Extracellular, Golgi, Lysosome, Mitochondria, Nucleus, Endoplasmic reticulum, Peroxisome, **Model simulation** unknown) Subsystems | 111 Priyanka Baloni

Analysis and experimental validation

experimental

validatior

Analysis

and

Role of Bile Acids in Alzheimer's disease

Transcriptome & Metabolomics information

- The most comprehensive human reconstruction, Recon3, was used as template for generating context-specific models

ROSMAP

Mayo

Mount Sinai

Bile acid (BA) metabolism Inferior Superior Frontal Temporal Parahippoc frontal Genes Synonym Role in BA metabolism Cerebellum cortex Frontal pole temporal cortex ampal gyrus gyrus gyrus NR1H4 FXR BA Receptors NR1I2 PXR BA Receptors NR1I1 VDR BA Receptors NR1I3 CAR BA Receptors
PPARA NR1C1 BA Receptors **PPARA NR1C1 BA Receptors**
PPARG NR1C3 BA Receptors **PPARG** NR1C3 BA Receptors
PPARD NR1C2 BA Receptors **Receptors** NR1C2 BA Receptors RARA RAR BA Receptors NR3C1 GR BA Receptors
HNF4A HNF4A BA Receptors HNF4A BA Receptors NR5A2 LRH-1 BA Receptors NR1H3 LXRα BA Receptors
NR1H2 LXRβ BA Receptors **Receptors** NR1H2 LXRβ BA Receptors
NR0B2 SHP BA Receptors SHP BA Receptors FGF19 **BA Receptors**
RXRA NR2B1 **BA Receptors** RXRA NR2B1 BA Receptors
RXRB NR2B2 BA Receptors **Receptors** RXRB NR2B2 BA Receptors
RXRG NR2B3 BA Receptors RXRG NR2B3 BA Receptors
SLC51A Osta BA Transporte SLC51A Ostα BA Transporters
SLC51B Ostβ BA Transporters SLC51B Ostβ BA Transporters
ABCB11 BSEP BA Transporters ABCB11 BSEP BA Transporters
ABCC1 MRP1 BA Transporters ABCC1 MRP1 BA Transporters
ABCC2 MRP2 BA Transporters **BA Transporters** ABCC3 MRP3 BA Transporters ABCC4 MRP4 BA Transporters
ABCB4 MDR2 BA Transporters ABCB4 MDR2 BA Transporters
ABCG5 BA Transporters ABCG5 BA Transporters
ABCG8 BA Transporters **BA Transporters** SLC10A2 ASBT BA Transporters SLC10A1 NTCP BA Transporters NPC1L1 BA Transporters Classical BA SLCO1B1 OATP1B1 BA Transporters Alternative BA CYP7A1 BA synthesis
CYP27A1 BA synthesis pathway CYP27A1 BA synthesis
CYP46A1 BA synthesis pathway CYP46A1 BA synthesis
CYP39A1 BA synthesis CYP39A1 BA synthesis
CYP7B1 BA synthesis Alternative BA CYP7B1 BA synthesis
CH25H BA synthesis CH25H BA synthesis
CYP8B1 BA synthesis Classical BA pathway **BA** synthesis pathwayAKR1C4 BA synthesis ACOX2 BA synthesis HSD17B4 BA synthesis AKR1D1 BA synthesis SLC27A5 BA synthesis AMACR BA synthesis BAAT BA synthesis HSD3B7 BA synthesis Institute for
Systems Biology SCP2 BA synthesis G protein coupled BA GPBAR1 TGR5 eceptor G protein coupled BA GPCR19 eceptor **Transcriptional** Revolutionizing Science. Enhancing Life. PPARGC1A PGC1A coactivator

Transcriptional Regulation of metabolism

Transcriptional regulatory network (SREBF1, SREBF2, PPARA, PPARG, LXR⍺/ß, RAR and RXR)

TF-metabolic gene interactions

Metabolites and genes involved in AD pathology

What do we infer from metabolomics analysis of brain samples?

-
- Brains from 111 AD and control patients profiled using the p180 platform
- > >60 bile acids (primary+secondary) identified in metabolomics study of brain samples⁴ (targeted approach)
- Bile acids not produce in the brain may be coming from the periphery (gut) and are being characterized by the consortium
- Curation of our metabolic models will attempt to include this information

4AMP-AD Knowledge Portal. www.synapse.org/#!Synapse:syn2580853

- SREBP1 and SREBP2 are important cholesterol regulators and variants of SREBP2 are linked with AD
- Role of Cholesterol transporters such as ABCA1, ABCA5, **ABCA7**, **APOE**, LPL and LCAT in AD pathophysiology is being probed
- \triangleright Classical pathway of bile acid synthesis is less active than alternative pathway
- o Expression of CYP27A1 and CYP7B1 and lack of expression of CYP7A1 and CYP8B1 indicates the role of alternative pathway in brain
- o 7α,12α-dihydroxycholesterol or 7α,12α-dihydroxycholest-4-en-3-one may cross the BBB from the circulation and enter the "classical pathway" down-stream of CYP7A1 and CYP8B1, helping to produce cholic acid (CA).
- \triangleright Bile acid receptors such as PPARA, PPARG, LXR α /ß, RAR and RXRs are expressed in brain but not yet par of our metabolic models (future work)
- Metabolic modeling of the transporters, receptors, synthesis enzymes and metabolites will help provide a mechanistic understanding of the relationship between cholesterol and bile acid metabolism to cognitive decline in AD

Acknowledgments

Nathan Price Lee Hood **Paul Shannon Priyanka Baloni** Matt Richards Rory Donovan Max Robinson Seth Ament (Maryland) Rima Kaddurah-Daouk Alexandra Kueider-Paisley Gregory Louie

Matthias Arnold

Gabi Kastenmueller Ben Logsdon (Sage) Ravi Madduri (Chicago) Segun Jung Alex Rodriguez Todd Golde (Florida) Nilufer Taner (Mayo) Mariet Allen Minerva Carasquilla

Funding

AMP-AD (U01AG046139, U01AG057452-01, U01AG046171-03) BDDS (1U54EB020406-01)

