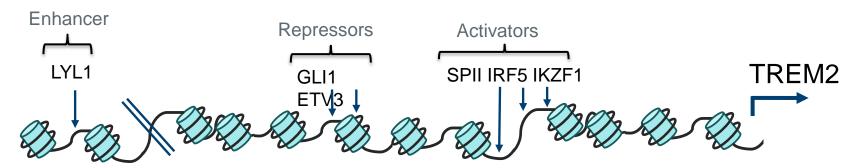
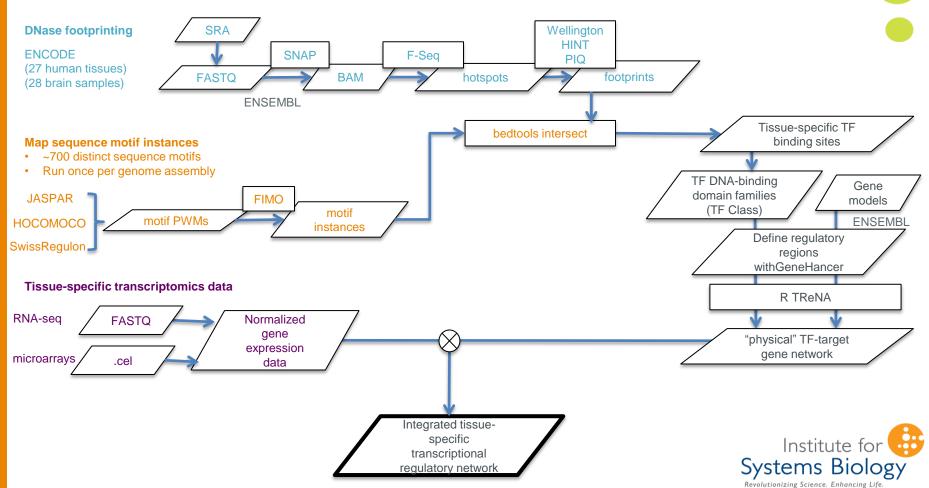

Metabolic and Transcriptional Regulatory Network Models in Alzheimer's Disease

Building models that provide biological insights and generate novel, testable hypotheses

All models are wrong, but some are useful.


— George E. P. Box —

AZQUOTES



Building a model of transcriptional regulation in the brain

- A single gene model consists of a list of transcription factors (TFs) and their footprints
- Inputs for a gene model
 - Brain-specific DHS data provides a list of putative binding sites (and TFs) that are potential regulators
 - Map between motifs and TFs
 - List of regulatory regions (GeneHancer)
 - Large RNA-seq dataset (>60 samples, can be microarray)
- Build a regression model between each individual TF and target gene using multiple LASSO approaches (and RF)

TReNA Workflow

AMP-AD Postmortem RNA-seq Brain Samples

SCIENTIFIC DATA

OPEN Data Descriptor: Human whole SUBJECT CATEGORIES » Neurodegeneration » Genetics of the nervous system » Genome-wide association studies » RAA sequencing Mariet Allen^{1,*}, Minerya M. Carrasquillo^{1,*}, Cory Funk², Benjamin D. Heavner²,

* KNA sequencing Mariet Allen *, Minerva M. Carrasquillo*, Cory Funk*, Benjamin D. Heavner', Fanggeng Zou¹, Curtis S. Younkin³, Jeremy D. Burgess¹, High-Seng Chai⁶, Julia Crook², James A. Eddy², Hongdong Li², Ben Logsdon⁵, Mette A. Peters⁵, Kristen K. Dang⁵, Xue Wang³, Daniel Serie³, Chen Wang⁶, Thuy Nguyen¹, Sarah Lincoln¹, Kimberly Malphrus¹, Gina Bisceglio¹, Ma Li¹, Todd E. Golde⁶, Lara M. Mangravite⁵, Yan Asmann², Nathan D. Price³, Ronald C. Petersen⁷, Neill R. Graff-Radford⁸, Dennis W. Dickson¹, Received: 8 April 2016

Group	Number of Brains	Brain Regions	RNA-seq Library Method	Pathologies			
Mayo Clinic, University of Florida, Institute for Systems Biology	~265	temporal cortex, poly-A enriched AD, con cerebellum		nolv-A enriched		AD, control	
Religions Orders Study and Memory and Aging Project (ROSMAP)	~600	dorsolateral prefrontal cortex	strand-specific	AD, MCI, control, Parkinson's			
Mount Sinai Brain Bank (MSBB)	~160	frontal pole, superior temporal gyrus, inferior frontal gyrus, parahippocamal gyrus	Ribo-zero	AD, MCI, control			

Available Genome-scale Models

- Models for each dataset and brain region
 - ROSMAP syn7984387
 - Mayo/UF/ISB temporal cortex syn8259337
 - Mayo/UF/ISB cerebellum syn8259326
 - MSSM frontal pole syn8281269
 - MSSM STG syn8281290
 - MSSM IFG syn8281276
 - MSSM PHG syn8281283
- Models are specific to brain region, but not cell type as RNA-seq data contains multiple cell types
 - If a gene is expressed in a single cell type, the TFs tend to be in same cell type
- Models are mechanistic and directional

Synapse

TReNA applications

- Take advantage of the mechanistic and directional TReNA results
- Genome-scale model can be used to interpret data from other approaches
 - Functional annotation of variants (INPP5D)
 - Provide biological context (VGF)
 - TF drivers of co-expressed or differentially expressed genes
 - Network changes from drugs

INPP5D Trena Model & Disruptions

READ ME SNP IGV trena model **Display Genomic Region:** Row (transcription factor) selection will display: -XY plot O Binding sites Add Track: tf.hgnc betaLasso Motif-breaking SNPs ▼ SP100 0.119 1 SNP score SPI1 0.244 2 0 4 12 TAL1 0.157 3 1.2 2.4 3.6 4.8 7.2 8.4 9.6 NFATC2 0 4 **FIMO** motif score 5 FLI1 0.093 0 12 6 LYL1 0.011 0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12 7 TFEC 0.092 Proximity ELK3 0 8 0 10 100 9 HHEX 0 0 40 50 60 70 80 100 10 IRF5 0 SNPs near binding sites in enhancer regions

pearsonCoeff betaRidge spearmanCoeff betaSgrtLasso pcaMax lassoPValue rfScore concordance 2.65e-46 0.74 34.625 0.041 0.753 0.084 0.618 2.125 1.54e-48 0.748 30.945 0.058 0.752 0.275 0.627 2.402 4e-42 0.712 16.618 0.042 0.684 0.156 0.555 1.642 0 0.442 0.636 0.678 16.249 0.028 0.697 0.938 2.66e-36 0.709 15.355 0.033 0.706 0.078 0.503 1.363 3.34e-7 0.722 14.954 0.04 0.713 0.01 0.436 1.005 4.78e-28 0.69 12.227 0.053 0.697 0.109 0.45 1.312 11.872 0 0.376 0.687 0.643 0.013 0.672 0.704 0.908 0.665 9.316 0.024 0.654 0 0.36 0.69 0.00764 0.689 5.624 0.047 0.683 0.005 0.414 0.857

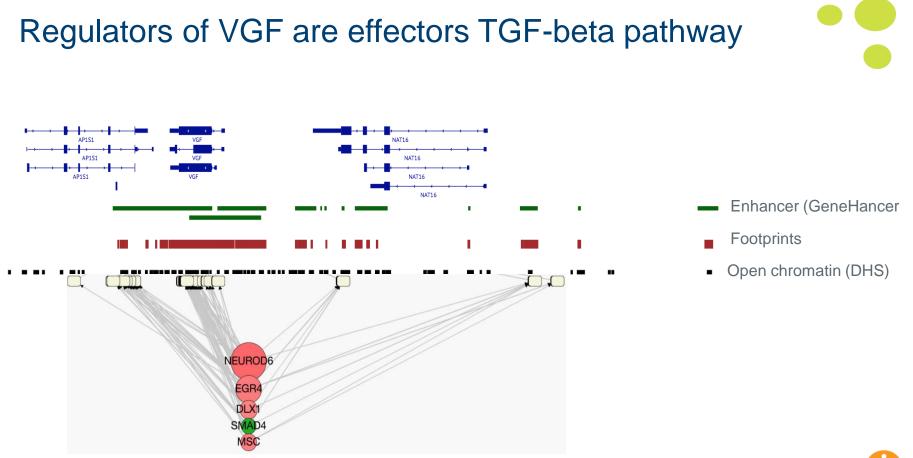
TF/INPP5D xy plot

INPP5D Trena Model & Disruptions

INPP5D Trena Model & Disruptions

Display Genomic Region:	IGV F	READ ME trena model	SNP TF/INPP5D	xy plot					
· ·	IGV	hg38 chr2:233,103,830-233	,124,632 Q 20 F	b	(Cursor Guide	Center Line Track La	bels	
Add Track:									
Motif-breaking SNPs	_	233,105 kb	233,110 kb	233,11	15 kb	233,120	kb .	2:	
SNP score	→(Gencode v24		·····		INPP5D		→→	¢
0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12	_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	NPP5D	· · · · · · · · · · · · · · · · · · ·		
FIMO motif score	_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·	INPP5D	_		
0 221 12 0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.8 10.8 12					INPP5D		₽+₽ -→>	→ → →	
Proximity 0 10 1000 0 10 20 30 40 50 60 70 80 90 100									
SNPs near binding sites in enhancer regions		GWAS snp		» II 110	t delt				۰.
	<u>o</u> '[NPP5D enhancers	I	11 - 1 <u>1 - 111 1</u> 1		1 I I	r ili Erit		۰.
	١	Motif-breaking snp						- i	•
				1 11 1111				- 10	•

INPP5D Trena Model & Disruptions


Agora nominee: VGF

- Nominated by multiple groups in AMP-AD
- Expressed in the adult brain in areas associated with higher cognitive functions, such as the hippocampus, the neocortex and the entorhinal cortex
- Regulates neural activity and survival
- Involved in energy balance
- TLPQ-62 regulates memory formation and depression
- TLPQ-21 (subset of TLPQ-62) binds to C3aR1 and has anti-obesity functions
- Downregulated in CSF of AD patients (potential biomarker)

Antidepressants Antidepressants Antidepressants Exercise Exercise Exercise BDNF BDNF BDNF TrkB VGF IGER Ras Grbz Akt ERK Downstream effects Syn-1 BDNF CRE

Levi, A., et al., Cell Mol Neurobiol, 2004. 24(4): p. 517-33. Thakker-Varia, S. and J. Alder, Behav Brain Res, 2009. 197(2): p. 262-78. Lin, W.J., et al., J Neurosci, 2015. 35(28): p. 10343-56. Fairbanks, C.A., et al., Pain, 2014. 155(7): p. 1229-37. Hannedouche, S., et al., J Biol Chem, 2013. 288(38): p. 27434-43. Cero, C., et al., Structure, 2014. 22(12): p. 1744-1753. Cero, C., et al., Mol Metab, 2017. 6(1): p. 148-158. Hendrickson, R.C., et al., PLoS One, 2015. 10(8): p. e0135365.

TReNA model of VGF pr

• NEUROD6

- Developmental gene involved differentiation, antioxidant response and mitochondrial function
- DLX1 & SMAD4
 - Known effectors of TGF-β signaling

Disease Markers Volume 2014, Article ID 123165, 10 pages http://dx.doi.org/10.1155/2014/123165

Research Article

RNA-Seq Data Mining: Downregulation of NeuroD6 Serves as a Possible Biomarker for Alzheimer's Disease Brains

Jun-ichi Satoh, Yoji Yamamoto, Naohiro Asahina, Shouta Kitano, and Yoshihiro Kino Research Article

ASN Neuro. 2010; 2(2): e00034. Published online 2010 May 24. Prepublished online 2010 Apr 22. doi: 10.1042/AN20100005 PMCID: PMC2874871 | factor PMID: 20517466 bioenerge

Dix1 and Dix2 Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis

Ramon Pla, Amelia Stanco, MacKenzie A Howard, Anna N Rubin, Daniel Vogt, Niall Mortimer, Inma Cobos, Gregory Brian Potter, Susan Lindtner, James D Price Alex S Nord Avel Visel Christoph E Schreiner, Scott C Baraban, David H Rowitch

Evf2 IncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling

Protection of TGF- β 1 against Neuroinflammation and Neurodegeneration in A β_{1-42} -Induced Alzheimer's Disease Model Rats

JI Smad4 is essential for directional progression from committed

Pr neural progenitor cells through neuronal differentiation in the postnatal mouse brain

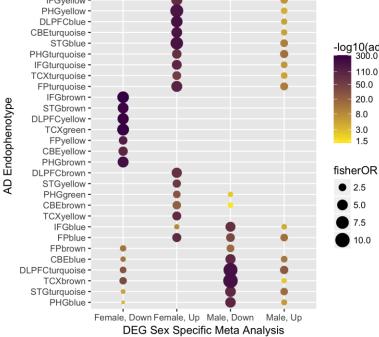
ark.

ctivation of

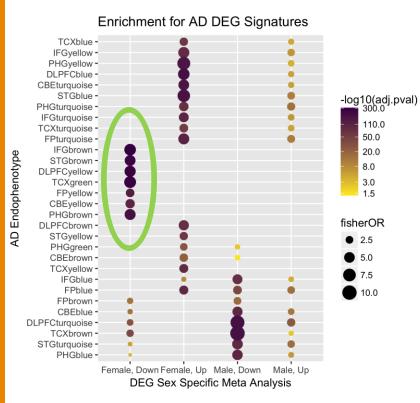
Transcriptional Regulation of Consensus Modules

IFGyellow -PHGvellow -DL PFCblue -STGblue --log10(adj.pval) IFGturauoise -110.0 50.0 FPturquoise -IFGbrown -20.0 STGbrown -8.0 DLPFCvellow -3.0 TCXareen -FPyellow -1.5

Enrichment for AD DEG Signatures

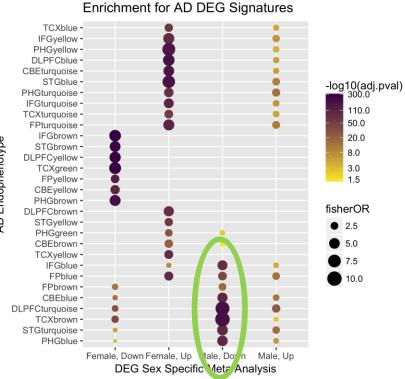

TCXblue -

Consensus co-expression modules assessed using the 3 large RNA-seq brain transcriptomic data sets (several brain regions)


- Module prefix represents the dataset from . which the base set of genes were evaluated
- Modules are not exclusive with many overlaps •
- Expression levels were adjusted for other • covariates
- Enrichments are for DEGs within co-• expression modules, comparing AD to control

Ben Logsdon

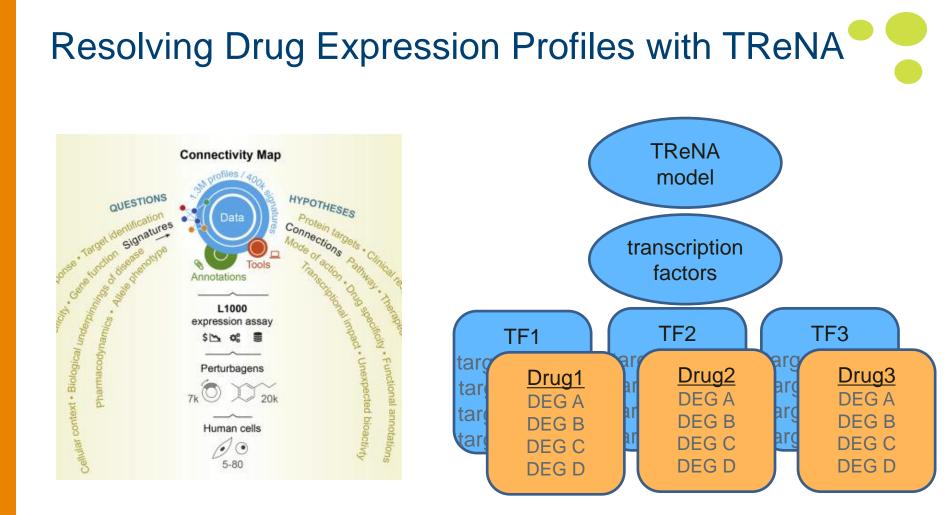
Transcriptional Regulation of Consensus Modules



TCXgreen module contains 2,766 genes and 1,383 DEG

	Transcription			
	Factor	frequency	avg.rank	sd.rank
1	MEF2D	108	2.12	1.33
2	TBR1	141	2.27	1.27
3	STAT4	298	2.50	1.38
4	PKNOX2	232	2.55	1.39
5	MXI1	99	2.60	1.37
6	SMARCA4	33	2.61	1.48
7	GABPA	265	2.62	1.42
8	MEF2C	246	2.63	1.32
9	SMAD5	232	2.68	1.41
10	NFIA	110	2.71	1.44

	gene	pearson.coeff	рсаМах	target.gene	Rank
1	MEF2C	0.66	14.00	TBC1D30	1
2	MEF2C	0.89	10.53	HECW1	2
3	MEF2C	0.81	9.85	STAT4	1
4	MEF2C	0.83	9.58	FAM19A1	1
5	MEF2C	0.78	9.38	SLC26A4	1
6	MEF2C	0.83	9.24	ADAM22	1
7	MEF2C	0.66	9.17	NUDCD3	1
8	MEF2C	0.83	8.82	PHF24	1
9	MEF2C	0.82	8.73	PPL	1

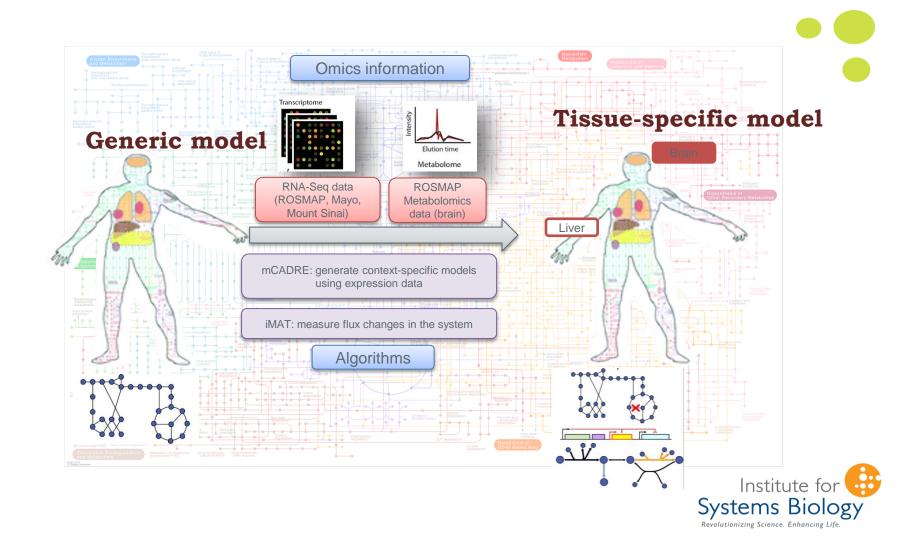

Transcriptional Regulation of Consensus Modules

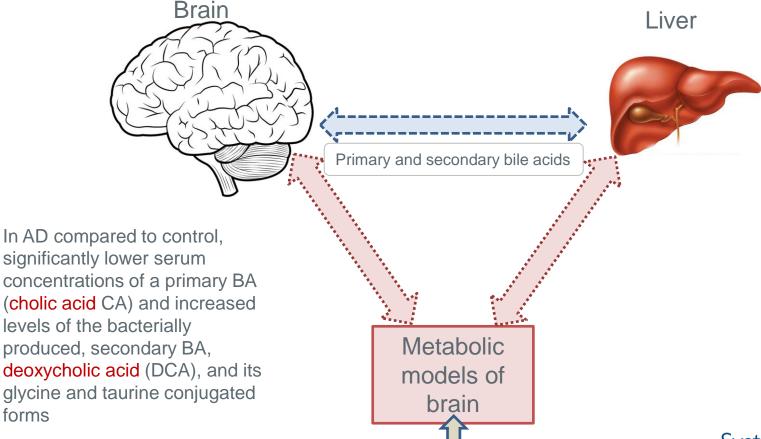
TCXbrown module contains 1,851 genes and 601 DEG

Tra	nscription				
	Factor	frequency	avg.rank	sd.rank	_
1	TFCP2	43	1.88	0.96	
2	RELA	25	2.32	1.18	
3	NR2C1	82	2.43	1.43	
4	THAP7	77	2.44	1.39	
5	SREBF1	88	2.50	1.34	
6	MAX	66	2.52	1.32	
7	GABPB1	120	2.53	1.45	
8	FOXN3	40	2.55	1.38	
9	RCOR3	78	2.55	1.36	
10	HLTF	34	2.56	1.31	
gene	e pears	on.coeff	рсаМах	target.gene	Rank
1 TFCF	P2 0	.72	10.61	TRIM45	1
2 TFCF	P2 0	.80	9.72	CIRBP	1
3 TFCF	P2 0	.65	9.71	AIG1	1
4 TFCF	P2 0).53	9.23	GSTO2	1
5 TFCF	P2 0).71	9.13	VEZT	1
6 TFCF	P2 0).72	8.53	ARFGAP2	1
7 TFCF	P2 0).71	8.38	DUS4L	1
8 TFCF	P2 0	.68	7.97	MED29	1
9 TFCF	P2 0).75	7.89	ІВТК	1

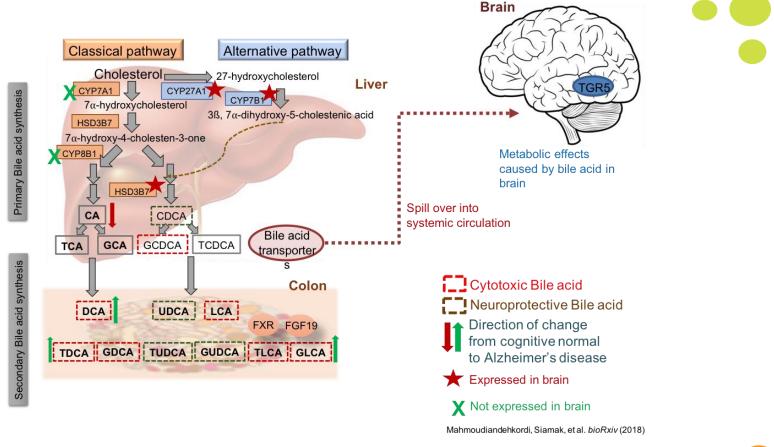
AD Endophenotype

Summary


- Transcriptional regulatory networks produce mechanistic and directional gene models that can be useful for identifying key TFs for individual genes
- Models can be used to inform biological hypotheses
- Models can be integrated with genomic data, enabling functional annotation of variants
- Models can be used to identify key TF drivers of DEGs and coexpressed networks

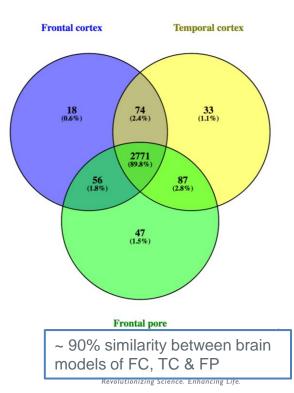

Genome-scale metabolic models (GSMs)

- Recon3 : most comprehensive and updated human metabolic reconstruction Data Analysis OCYC Model reconstruction and experimental Reactions 13,543 Genes 3,288 (unique) 0 0 0 1 5,5 $\mathbf{I}_{try} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ validatior **Metabolites** 4,140 (unique) 9 (Cytoplasm, Compartments Extracellular, Golgi, Lysosome, Mitochondria, Nucleus, Endoplasmic reticulum, Peroxisome, **Model simulation** unknown) 111 Subsystems Priyanka Baloni



Role of Bile Acids in Alzheimer's disease

Transcriptome & Metabolomics information


- The most comprehensive human reconstruction, Recon3, was used as template for generating context-specific models

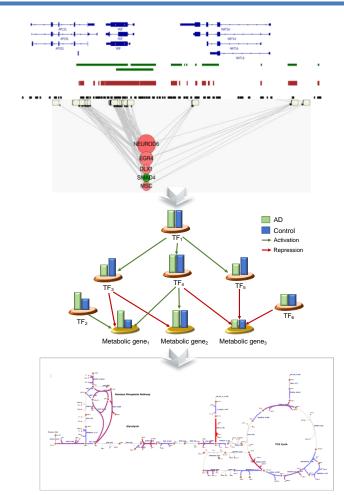
ROSMAP

	Frontal cortex
Reactions	5786
Genes	3254
Metabolites	5685

<u>Mayo</u>

	Cerebellum	Temporal cortex
Reactions	5355	6011
Genes	3316	3304
Metabolites	5278	5843

Mount Sinai


	FP	IFG	PHG	STG
Reactions	5565	5677	5152	5590
Genes	3297	3337	3270	3305
Metabolites	5707	5786	5408	5758

		Role in Cholesterol		Frontal	Temporal	Frontal	Inferior	Parahippo	c Superior	
Senes	Synonyms	metabolism	Cerebellum	cortex	cortex	pole	frontal gyrus	ampal gyrus	temporal gyrus	
REBP1	SREBF1	Cholesterol Regulator					gyrus	gyrus	gyrus	TFs regulating sterol-
	SREBF2	Cholesterol Regulator								
CAP		Cholesterol Regulator								regulated genes
ISIG1 ISIG2		Cholesterol Regulator				-	-			regulated genes
EC23A		Cholesterol Regulator Cholesterol Regulator			-	-	-			
EC24A		Cholesterol Regulator								
EC13		Cholesterol Regulator								
EC31A		Cholesterol Regulator								
BTPS1	SKI1	Cholesterol Regulator								
IBTPS2		Cholesterol Regulator				_				
BCA5 BCA8		Cholesterol Transporters			_					
POA1	-	Cholesterol Transporters Cholesterol Transporters								
POA1	1	Cholesterol Transporters	1		1	1			1	
POC1		Cholesterol Transporters								
POC2		Cholesterol Transporters								
POC3		Cholesterol Transporters								Major apoprotain of
POE	-	Cholesterol Transporters								Major apoprotein of
POB POM	-	Cholesterol Transporters Cholesterol Transporters					-		_	the ehylemieren
TTP	1	Cholesterol Transporters			-	-				the chylomicron
BCA1		Cholesterol Transporters								
BCA7	İ.	Cholesterol Transporters								ATP-binding cassette (ABC) transporters
CAT		Cholesterol Transporters								
ETP		Cholesterol Transporters								and risk factor for late-onset AD
PL		Cholesterol Transporters								
BCG1		Cholesterol Transporters				-	-			
BCG4 BCG2		Cholesterol Transporters Cholesterol Transporters			-					
ORL1	C11orf32	Cholesterol Transporters								
CAT1		Cholesterol Transporters								
CAT2		Cholesterol Biosynthesis								
MGCS1		Cholesterol Biosynthesis								
MGCR		Cholesterol Biosynthesis			_	-	-			
IVK MVK		Cholesterol Biosynthesis Cholesterol Biosynthesis			-					
IVD		Cholesterol Biosynthesis								
DI1		Cholesterol Biosynthesis								
012		Cholesterol Biosynthesis								
DPS		Cholesterol Biosynthesis								
DFT1		Cholesterol Biosynthesis								
QLE SS		Cholesterol Biosynthesis Cholesterol Biosynthesis			-					
HCR7	-	Cholesterol Biosynthesis								
		Sphingosine-1-Phosphate								
1PR1		Receptor								
		Sphingosine-1-Phosphate								
1PR2	ļ	Receptor								
1PR3	1	Sphingosine-1-Phosphate								
IPR3		Receptor Sphingosine-1-Phosphate								
1PR5	1	Receptor								
LU	APOJ	Chaperone								
DLR		LDLR gene family								
LDLR		LDLR gene family								
RP1	APOER	LDLR gene family								Peripheral cholesterol transport Institute for
RP1b		LDLR gene family								
RP2 RP4		LDLR gene family LDLR gene family			_					
RP4 RP5	1	LDLR gene family								Systems Biology
RP6	1	LDLR gene family								
RP8	1	LDLR gene family								Revolutionizing Science. Enhancing Life.
RAD3		LDLR gene family								

Bile acid (BA) metabolism Inferior Superior Frontal Temporal Parahippoc Role in BA metabolism Cerebellum Frontal pole frontal temporal Genes Svnonvm cortex cortex ampal gyrus avrus avrus NR1H4 FXR BA Receptors NR1I2 PXR BA Receptors NR1I1 VDR BA Receptors NR1I3 CAR BA Receptors PPARA NR1C1 BA Receptors PPARG NR1C3 BA Receptors Receptors PPARD NR1C2 **BA Receptors** RARA RAR BA Receptors NR3C1 GR BA Receptors HNF4A HNF4A BA Receptors LRH-1 BA Receptors NR1H3 LXRα BA Receptors Receptors NR1H2 BA Receptors NR0B2 SHP BA Receptors FGF19 FGF19 **BA Receptors** RXRA NR2B1 **BA Receptors** Receptors RXRB NR2B2 BA Receptors RXRG NR2B3 BA Receptors SLC51A Osta BA Transporters SLC51B Ostβ BA Transporters ABCB11 BSEP BA Transporters ABCC1 MRP1 BA Transporters ABCC2 MRP2 BA Transporters ABCC3 MRP3 BA Transporters ABCC4 MRP4 BA Transporters ABCB4 BA Transporters ABCG5 BA Transporters ABCG8 BA Transporters SLC10A2 ASBT BA Transporters SLC10A1 NTCP 3A Transporters NPC1L1 BA Transporters SLCO1B1 OATP1B1 **BA Transporters Classical BA** Alternative BA YP7A1 BA synthesis pathway YP27A1 BA synthesis pathway CYP46A1 BA synthesis CYP39A1 BA synthesis Alternative BA 🖛 YP7B1 BA synthesis CH25H **Classical BA** BA synthesis pathway CYP8B1 BA synthesis pathway AKR1C4 BA synthesis ACOX2 BA synthesis HSD17B4 BA synthesis AKR1D1 BA synthesis SLC27A5 BA synthesis AMACR BA synthesis BAAT BA synthesis HSD3B7 BA synthesis Institute for 😯 Systems Biology SCP2 BA synthesis G protein coupled BA GPBAR1 TGR5 receptor G protein coupled BA GPCR19 receptor Transcriptional Revolutionizing Science. Enhancing Life. PPARGC1A PGC1A coactivator

Transcriptional Regulation of metabolism

Transcriptional regulatory network (SREBF1, SREBF2, PPARA, PPARG, LXRα/ß, RAR and RXR)

TF-metabolic gene interactions

Metabolites and genes involved in AD pathology

What do we infer from metabolomics analysis of brain samples?

- •
- Brains from 111 AD and control patients profiled using the p180 platform
- >60 bile acids (primary+secondary) identified in metabolomics study of brain samples⁴ (targeted approach)
- Bile acids not produce in the brain may be coming from the periphery (gut) and are being characterized by the consortium
- Curation of our metabolic models will attempt to include this information

12-DHCA	12-dehydrocholic acid	GUDCA	Glycoursodeoxycholic acid
3-DHCA	3-dehydrocholic acid	HCA	Hyocholic acid
CDCA	Chenodeoxycholic acid	LCA-3S	Lithocholic acid 3 sulfate
CA	Cholic acid	GDCA	Glycodeoxycholic acid
DCA	Deoxycholic acid	HDCA	Hyodeoxycholic acid
GCDCA	Glycochenodeoxycholate	TCA	Taurocholic acid
GCA	Glycocholic acid	TCDCA	Taurochenodeoxycholate
LCA	Lithocholic acid	TDCA	Ttaurodeoxycholate
GLCA	Glycolithocholate	UCA	Ursocholic acid
UDCA	Ursodeoxycholic acid	alloLCA	Allolithocholic acid

⁴AMP-AD Knowledge Portal. www.synapse.org/#!Synapse:syn2580853

- SREBP1 and SREBP2 are important cholesterol regulators and variants of SREBP2 are linked with AD
- Role of Cholesterol transporters such as ABCA1, ABCA5, ABCA7, APOE, LPL and LCAT in AD pathophysiology is being probed
- Classical pathway of bile acid synthesis is less active than alternative pathway
- Expression of CYP27A1 and CYP7B1 and lack of expression of CYP7A1 and CYP8B1 indicates the role of alternative pathway in brain
- 7α,12α-dihydroxycholesterol or 7α,12α-dihydroxycholest-4-en-3-one may cross the BBB from the circulation and enter the "classical pathway" down-stream of CYP7A1 and CYP8B1, helping to produce cholic acid (CA).
- Bile acid receptors such as PPARA, PPARG, LXRα/ß, RAR and RXRs are expressed in brain but not yet par of our metabolic models (future work)
- Metabolic modeling of the transporters, receptors, synthesis enzymes and metabolites will help provide a mechanistic understanding of the relationship between cholesterol and bile acid metabolism to cognitive decline in AD

Acknowledgments

Nathan Price Lee Hood **Paul Shannon** Priyanka Baloni Matt Richards Rory Donovan Max Robinson Seth Ament (Maryland) Rima Kaddurah-Daouk Alexandra Kueider-Paisley **Gregory Louie** Matthias Arnold

Gabi Kastenmueller Ben Logsdon (Sage) Ravi Madduri (Chicago) Segun Jung Alex Rodriguez Todd Golde (Florida) Nilufer Taner (Mayo) Mariet Allen Minerva Carasquilla

Funding

AMP-AD (U01AG046139, U01AG057452-01, U01AG046171-03) BDDS (1U54EB020406-01)

