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Integrating three data sources
with two informatics approaches
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EHR analysis evaluates potential off-label use 
that may delay symptoms of Alzheimer’s disease
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- probe ≥ decade preclinically 
- # of subjects > clinical trials 
- execution time is shorter 
- propensity matching 
- combination therapies
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In silico drug trials - longitudinal EHR analyses
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Initiation trial (asymptomatic to diagnosis):
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Metformin reduces progression to dementia 
relative to sulphonylurea in diabetics
Strata Number of 

obs
Hazard 
Ratio

P-value [95% Conf. Interval]

Follow-up for up to 10 y
  Model 1: (age and gender)

            Metformin 128,727 0.615 <0.001 0.589 0.643

    Model 2: fully adjusted

            Metformin 64,288 0.502 <0.001 0.434 0.581

Fully adjusted includes age at prescription, gender, 
socioeconomic status, vascular comorbidities, smoking, BMI, 
and HbA1c level



Metformin reduces progression to dementia 
relative to sulphonylurea in diabetics
Strata Number of 

obs
Hazard 
Ratio

P-value [95% Conf. Interval]

Follow-up for up to 10 y
  Model 1: (age and gender)

            Metformin 128,727 0.615 <0.001 0.589 0.643

    Model 2: fully adjusted

            Metformin 64,288 0.502 <0.001 0.434 0.581

Fully adjusted includes age at prescription, gender, 
socioeconomic status, vascular comorbidities, smoking, BMI, 
and HbA1c level

Follow-up >=10 years

  Model 1: (age and gender)

            Metformin 76,065 0.825 <0.001 0.779 0.874
    Model 2: fully adjusted
            Metformin 22,943 0.696 <0.001 0.613 0.789
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Task definition: given an RNAseq profile, 
predict disease stage (AB, AC, BC, Ordinal)
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Begin by asking how well does a randomly-
selected subset of genes predict disease stage

?
10 randomly- 
selected genes



Gene set as a unit of prior knowledge

Intuition: if a gene set of interest is important for predicting 
phenotypic state, we expect to see higher prediction 
performance than with a randomly selected gene set of the 
same cardinality.
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https://github.com/ArtemSokolov/ampad

https://github.com/ArtemSokolov?tab=repositories


Repurposed drug perturbations to gene 
expression levels as the gene set of interest
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Converting drug names to gene sets

Example: 
Metformin
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Compare drug-related gene set against random sets
for Metformin in the Break predictor

Mined 
Size: 64 
Area UC: 0.632 
pval: 0.79

Experimental 
Size: 65 
Area UC: 0.637 
pval: 0.73

Combined 
Size: 472 
Area UC: 0.736 
pval: 0.06



3’ Digital Gene Expression (DGE) allows for high-
throughput profiling of multiple 384-well plates
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Song…. Albers, Mitchison, Sorger, under review



Human neuron profiles yield improved performance for Metformin

Mined 
Size: 64 
AUC: 0.632 
pval: 0.79

Experimental 
Size: 65 
AUC: 0.637 
pval: 0.73

Combined 
Size: 472 
AUC: 0.736 
pval: 0.06

DGE-derived 
Size: 901 
AUC: 0.780 
pval: 0.01



Validation
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Validation

Discovery
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Discovery efforts have identified 20 more drug 
perturbations that associate with disease progression
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Summary
1. In silico drug trials in EHR can evaluate a 

repurposed drug candidates. The hazard ratio of 
diabetics on metformin to develop dementia is 
significantly reduced relative to diabetics on 
sulfonylurea. 

2. Genes differentially expressed by metformin in 
human CNS cell types predict stage of AD in 
human brains. 

3. Cellular context matters. Drug induced patterns of 
differentially expressed genes in human CNS cell 
types predict stage of AD better than drug induced 
patterns derived from non-CNS cell types.





Induction of defensins and reduced translation by Metformin in human CNS cells
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