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Integrating three data sources
with two Informatics approaches
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EHR analysis evaluates potential off-label use
that may delay symptoms of Alzheimer’s disease

- probe = decade preclinically
- # of subjects > clinical trials
[ EHR ] - execution time is shorter
- propensity matching
- combination therapies

Metformin
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In silico drug trials - longitudinal EHR analyses

Initiation trial (asymptomatic to diagnosis):

age 50
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In silico drug trials - longitudinal EHR analyses

Initiation trial (asymptomatic to diagnosis):

age 50 age at diagnosis
age 50 age at diagnosis |
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Metformin reduces progression to dementia
relative to sulphonylurea in diabetics

Number of Hazard [95% Conf. Interval]
obs Ratio

Follow-up forup to 10 y

Model 1: (age and gender)

Metformin 128,727 0.615 <0.001 0.589 0.643
Model 2: fully adjusted
Metformin 64,288 0.502 <0.001 0.434 0.581

Fully adjusted includes age at prescription, gender,
socioeconomic status, vascular comorbidities, smoking, BMI,
and HbA1c level



Metformin reduces progression to dementia
relative to sulphonylurea in diabetics

Number of Hazard [95% Conf. Interval]
obs Ratio

Follow-up forup to 10 y

Model 1: (age and gender)

Metformin 128,727 0.615 <0.001 0.589 0.643
Model 2: fully adjusted
Metformin 64,288 0.502 <0.001 0.434 0.581

Follow-up >=10 years
Model 1: (age and gender)

Metformin 76,065 0.825 <0.001 0.779 0.874
Model 2: fully adjusted
Metformin 22,943 0.696 <0.001 0.613 0.789
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Task definition: given an RNAseq profile,
predict disease stage (AB, AC, BC, Ordinal)

A

20k genes

RNAseq
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Begin by asking how well does a randomly-
selected subset of genes predict disease stage

10 randomly-
selected genes




Gene set as a unit of prior knowledge

Intuition: if a gene set of interest is important for predicting
phenotypic state, we expect to see higher prediction
performance than with a randomly selected gene set of the
same cardinality.

Gene set
of interest

Random\ /

p-value

Density

~

Performance
https://qithub.com/ArtemSokolov/ampad



https://github.com/ArtemSokolov?tab=repositories

Repurposed drug perturbations to gene
expression levels as the gene set of interest
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Converting drug names to gene sets

Example: J\ﬂ* )NE
\Metformin \ITI H NH, »



Converting drug names to gene sets

NH NH

Example:
- < A

Metformin N

N~ "NH
| H ‘

Deciphering Signaling Pathway Networks to Understand the
Molecular Mechanisms of Metformin Action
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Converting drug names to gene sets

NH NH

Example:
e < A
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Deciphering Signaling Pathway Networks to Understand the
Molecular Mechanisms of Metformin Action

Jingchun Sun, Min Zhao, Peilin Jia, Lily Wang, Yonghui Wu, Carissa lverson, Yubo Zhou, Erica Bowton, Dan M. Roden,

Joshua C. Denny, Melinda C. Aldrich, Hua Xu [&], Zhongming Zhao [=]

Metformin upstream Human SPNetwork Metformin downstream
genes genes

Drug targets (DrugBank) ek
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Compare drug-related gene set against random sets
for Metformin in the Break predictor

Mined

Size: 64

Area UC: 0.632
pval: 0.79

0.55 0.60 0.65 0.70 0.75 0.80
AUC

Experimental
Size: 65

Area UC: 0.637
pval: 0.73

0.55 0.60 0.65 0.70 0.75 0.80
AUC

Combined
Size: 472

Area UC: 0.736
pval: 0.06

0.55 0.60 0.65 0.70 0.75 0.80
AUC



3" Digrital Gene Expression (DGE) allows for high-

throughput profiling of multiple 384-well plates
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Human neuron profiles yield improved performance for Metformin

55 0.60

0. 0.65 0.70 0.75 0.80
AUC

0.55 0.60 0.65 0.70 0.75 0.80
AUC

0.55 0.60 0.65 0.70 0.75 0.80
AUC

/\h

0.55 0.60 0.65 0.70 0.75 0.80

AUC

Mined
Size: 64
AUC: 0.632
pval: 0.79

Experimental
Size: 65
AUC: 0.637
pval: 0.73

Combined
Size: 472
AUC: 0.736
pval: 0.06

DGE-derived
Size: 901
AUC: 0.780
pval: 0.01
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Discovery efforts have identified 20 more drug
perturbations that associate with disease progression

0.76 1

AUC based on DGE sets

0.64 1

o
N
N

0.68 -

fedratinib
Gene Set Size nvp—tae684Q
e 10
kw2449
e 25
e 50 ruxolignib
; hg-9-91-01
® 100 torlry O%
® bx-912
® 200 bortezomib
brivanibe ®tofacitinib zm—5147439
pha—668752 algertib
@
Idn-193189
pb84720 sb202190
pf04217903
@ .
®barasertib
gskl 0596715
° cabozantinib r 59-022
r 59949 ,  a443654
o entinostat
gsk1070916
0.50 0.55 0.60 0.65

AUC based on mined sets

0.7+

0.51

Y [ )
°, @
o o °
[ } ..
[ )
( ]
®e
[ J
[ )
[ ] ® .' 9
[]
[ ]
.~...
[ ]
‘ [ ] [ ]
@ ’ bt '.
[ ]
2 . * A-vs-B
: s ¢ e A-vs-C
" [ J [ J B—VS—C
é e Ordinal
050 0.55 0.60 0.65




Summary

1. In silico drug trials in EHR can evaluate a
repurposed drug candidates. The hazard ratio of
diabetics on metformin to develop dementia is
significantly reduced relative to diabetics on
sulfonylurea.

2. Genes differentially expressed by metformin in
human CNS cell types predict stage of AD in
numMan brains.

3. Cellular context matters. Drug induced patterns of
differentially expressed genes in human CNS cell
types predict stage of AD better than drug induced
patterns derived from non-CNS cell types.






Induction of defensins and reduced translation by Metformin in human CNS cells

Pathway
REACTOME_DEFENSINS
REACTOME_BETA_DEFENSINS
KEGG_TASTE_TRANSDUCTION
REACTOME_ACETYLCHOLINE_NEUROTRANSMITTER_RELEASE_CYCLE
REACTOME_BINDING_AND_ENTRY_OF_HIV_VIRION
REACTOME_GLYCEROPHOSPHOLIPID_BIOSYNTHESIS
ST_G_ALPHA_I_PATHWAY
REACTOME_STEROID_HORMONES
REACTOME_GLYCOSAMINOGLYCAN_METABOLISM
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM

Pathway
KEGG_RIBOSOME
REACTOME_PEPTIDE_CHAIN_ELONGATION
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION
REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE
REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION
REACTOME_INFLUENZA_LIFE_CYCLE
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX
REACTOME_TRANSLATION
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Progression trial (diagnosis to moderate stage):

age at diagnosis age at moderate stage milestone
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