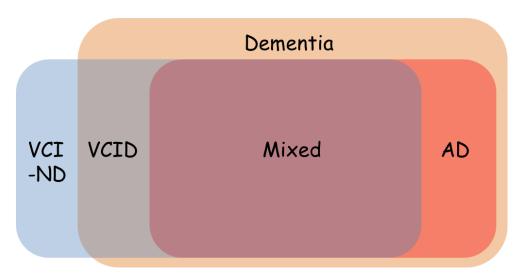
Integrative translational discovery of vascular risk factors in aging and dementia

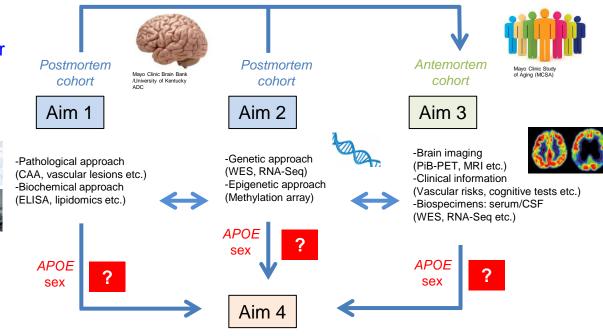
Guojun Bu, PhD

Mary Lowell Leary Professor of Medicine, Professor of Neuroscience Mayo Clinic Jacksonville


Molecular Mechanisms of the Vascular Etiology of AD (M²OVE-AD)

NIA-AA Symposium: Enabling precision medicine for Alzheimer's disease through open science July 19-July 20, 2018; Chicago

Cerebrovascular contribution to dementia

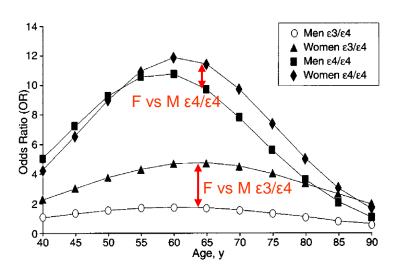

- AD is the most common cause of dementia accounting for 60-80% of dementia cases.
- In individuals with Alzheimer's dementia, ~90% of cases have cerebrovascular lesions including cerebral amyloid angiopathy (CAA).

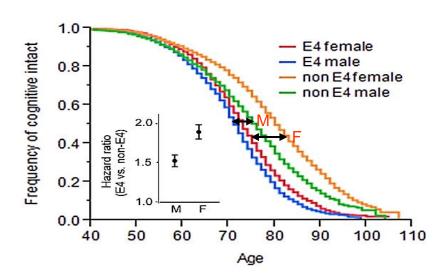
How vascular pathology and risk factors converge with AD?

Multidisciplinary approaches to define vascular risk factors in aging, AD and dementia

M²OVE-AD Consortium Multi-PI: Bu and Ertekin-Taner RF1AG051504 RF1AG051504-01S2

In vitro/in vivo models




- -in vitro vascular models
- -iPSC models
- -Tissue specific apoE isoform inducible mice

APOE ε4 allele has a greater effect on AD risk/cognitive decline in females than males – sex-dependent effects

- Peak effect ages: 55-70
- Greater ORs in females than in males

Cross sectional analysis of 21,531 subjects from National Alzheimer's Coordinating Center (NACC)

Farrer et al., JAMA, 1997

Shinohara et al., Ann Neurol, 2016

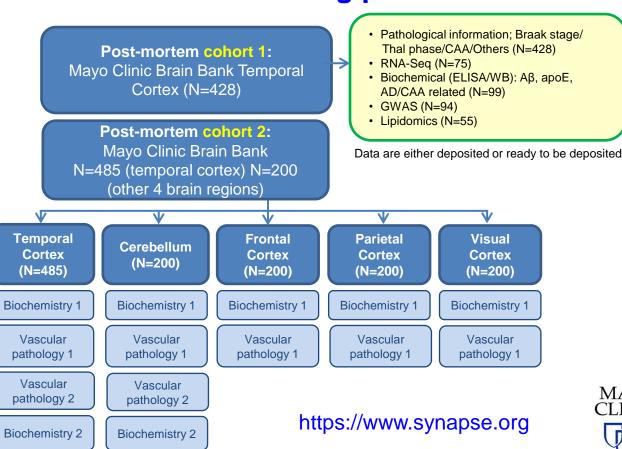
Impact of APOE and sex on vascular pathologies: Pathological, biochemical, and multi-omics studies using postmortem brains

Aim: Determine pathological, biochemical and multi-omics correlations in postmortem Alzheimer's brains with varying amounts of CAA and other vascular lesions

Aβ, apoE, AD/CAA related (ELISA).

N=1285

Microvessel density/intracranial


atherosclerosis (Histology), N=1285

Tight junction (ELISA)/BBB

(immunostaining), N=685

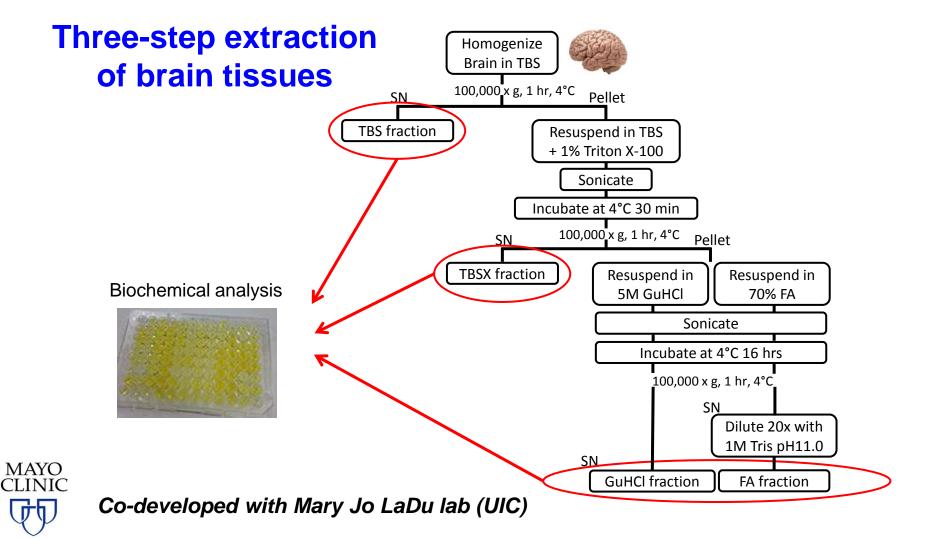
Sex hormones (LC/MS)/

receptors (ELISA/WB), N=685

MAYO

CLINIC

Subject Characteristics - Postmortem Human Brain Cohort 1


Pathologically-confirmed AD cases

	APOE4 non-carrier		APOE4 carrie	r	
	Female	Male	Female	Male	
	(N=103)	(N=68)	(N=143)	(N=114)	
Age	81 (75, 88)	80 (73, 85)	83 (78, 88)	79 (73, 83)	
Braak Stage					
<5	12 (12)	8 (12)	11 (8)	10 (9)	
5-5.5	39 (38)	27 (40)	39 (27)	45 (39)	
6	52 (50)	33 (49)	93 (65)	59 (52)	
Thal Stage					
Missing	1	0	2	2	
<4	11 (11)	6 (9)	8 (6)	11 (10)	
4	8 (8)	7 (10)	11 (8)	10 (9)	
5	83 (81)	55 (81)	122 (87)	91 (81)	

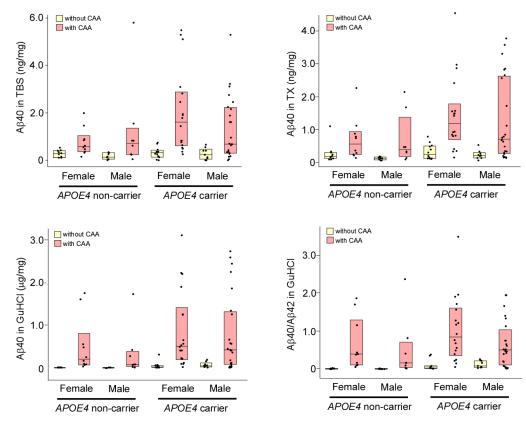
Median and interquartile range (IQR) shown for age; number (%) shown for Braak and Thal stages.

ε2/ε3	ε2/ε4	ε3/ε3	ε3/ε4	ε4/ε4	total
n=12	n=9	n=159	n=188	n=60	n=428

Associations of sex and APOE4 with CAA score

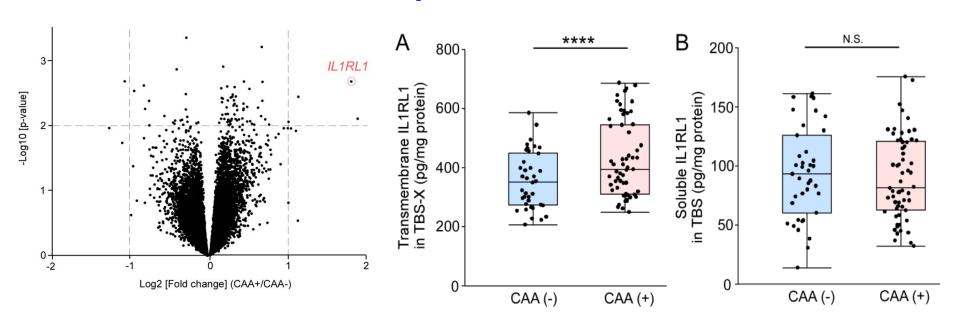
				Additionally adjusting f	For age,
		Sex and APOE4 in	n model ^c	Braak stage and Thal s	tage ^c
Covariate	Subgroup	Effect (95% CI)	p-value ^d	Effect (95% CI)	p-value ^d
Male	All a (n=428)	0.25 (0.10, 0.40)	<.001	0.27 (0.12, 0.42)	<.001
	<i>APOE4</i> - ^b (n=171)	0.27 (0.03, 0.51)	0.027	0.29 (0.05, 0.53)	0.017
	APOE4+ b (n=257)	0.24 (0.05, 0.43)	0.014	0.26 (0.06, 0.46)	0.010
APOE4+	All a (n=428)	0.23 (0.08, 0.38)	0.003	0.22 (0.06, 0.37)	0.005
	Females ^b (n=246)	0.24 (0.04, 0.44)	0.017	0.23 (0.03, 0.43)	0.024
	Males ^b (n=182)	0.21 (-0.02, 0.45)	0.074	0.20 (-0.03, 0.43)	0.095
APOE4	All ^a	0.30 (0.20, 0.41)	<.001	0.30 (0.19, 0.40)	<.001
allelic dose	Females ^b	0.30 (0.16, 0.44)	<.001	0.29 (0.15, 0.43)	<.001
	Males ^b	0.30 (0.15, 0.46)	<.001	0.31 (0.15, 0.46)	<.001

^a Results from models with no interaction terms. ^b Results from models with interaction of *APOE4* and sex. ^c Age is included as a continuous variable, Braak stage as dichotomous (6 vs. <6), and Thal as dichotomous (5 vs. <5). ^d Wald p-value.

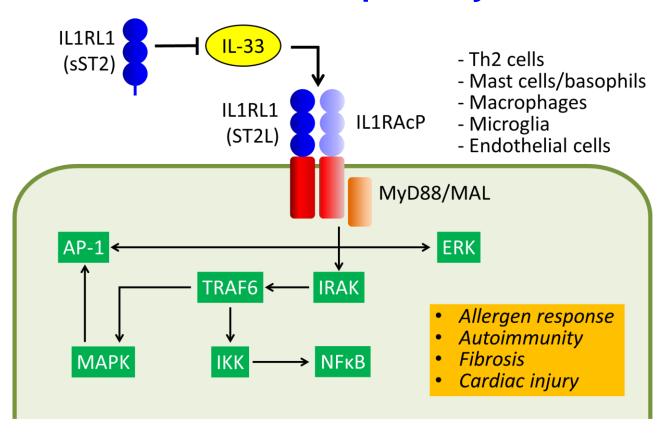


Associations of CAA, sex, and *APOE4* with Aβ and apoE in temporal cortex

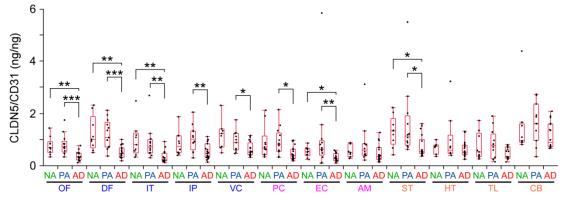
	TBS		TX		GuHCl	
	Relative Level a		Relative Level ^a		Relative Level ^a	
	(95% CI)	p-value ^b	(95% CI)	p-value ^b	(95% CI)	p-value ^b
Αβ40						
CAA+	3.50 (2.45, 5.00)	<.001	3.64 (2.37, 5.59)	<.001	17.55 (10.17, 30.29)	<.001
Sex; Male	0.71 (0.50, 1.00)	0.053	0.77 (0.51, 1.16)	0.213	0.68 (0.40, 1.17)	0.161
APOE4+	1.71 (1.20, 2.46)	0.003	1.61 (1.06, 2.47)	0.027	3.99 (2.30, 6.92)	<.001
Αβ42						
CAA+	0.88 (0.67, 1.17)	0.377	1.74 (0.99, 3.07)	0.053	1.22 (0.98, 1.51)	0.077
Sex; Male	1.10 (0.83, 1.45)	0.513	0.99 (0.57, 1.73)	0.978	1.15 (0.93, 1.42)	0.208
APOE4+	0.92 (0.69, 1.22)	0.575	1.26 (0.72, 2.22)	0.423	1.10 (0.88, 1.37)	0.387
Αβ40/Αβ42						
CAA+	3.97 (2.67, 5.92)	<.001	2.30 (1.43, 3.69)	<.001	14.43 (8.74, 23.83)	<.001
Sex; Male	0.64 (0.43, 0.96)	0.029	0.91 (0.57, 1.44)	0.676	0.59 (0.36, 0.97)	0.038
APOE4+	1.86 (1.24, 2.78)	0.003	1.13 (0.70, 1.81)	0.624	3.62 (2.18, 6.01)	<.001
ApoE						
CAA+	1.08 (0.94, 1.25)	0.275	1.07 (0.92, 1.24)	0.409	1.69 (1.15, 2.48)	0.007
Sex; Male	1.09 (0.95, 1.26)	0.231	1.15 (0.99, 1.34)	0.068	0.74 (0.51, 1.08)	0.119
APOE4+	0.80 (0.69, 0.93)	0.003	0.96 (0.83, 1.13)	0.649	1.69 (1.15, 2.49)	0.008


^a Analyses use logarithm of biochemical measures as response variable in linear regression analyses including variables CAA group (severe versus none), sex (male vs. female) and *APOE4* (presence vs. absence) and also adjusting for age; estimated effects are exponentiated to provide effect expressed as a relative level or fold change. ^b Wald p-value.

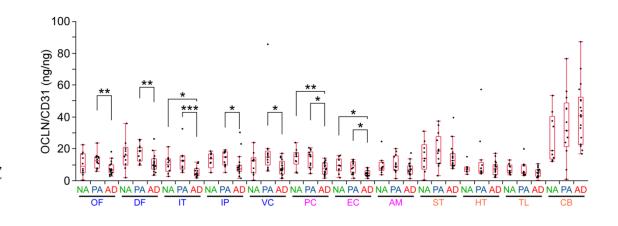
CAA-, sex- and *APOE4*-dependent effects on Aβ40 in the temporal cortex


IL1RL1 expression is upregulated in AD cases with CAA: transcriptomics studies

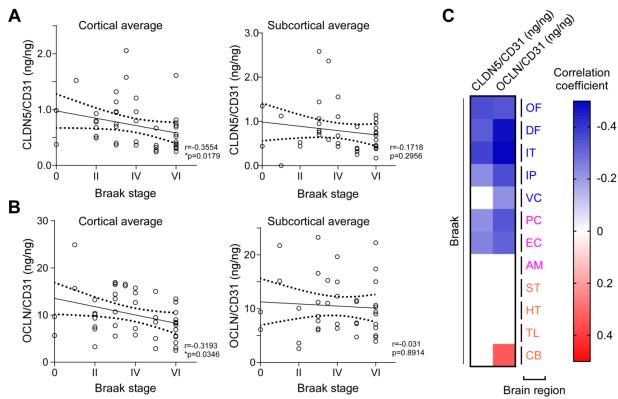
Transcripts in the temporal cortex from AD cases with severe CAA (n=43) or without CAA (n=32) were analyzed by RNA-seq.


The Mayo Clinic AD-CAA RNA-Seq (MC-CAA) study https://www.synapse.org/#!Synapse:syn9779506

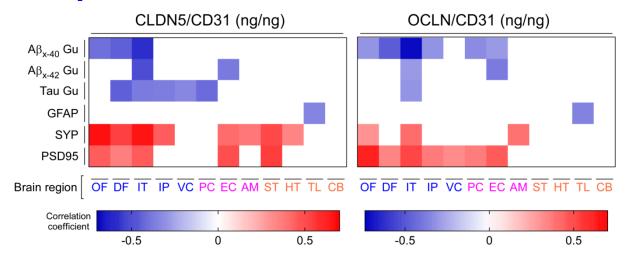
IL1RL1/IL-33 pathway



Tight junction proteins are selectively decreased in cortical regions during AD progression


NA: normal aging

PA: pathological aging AD: Alzheimer's disease

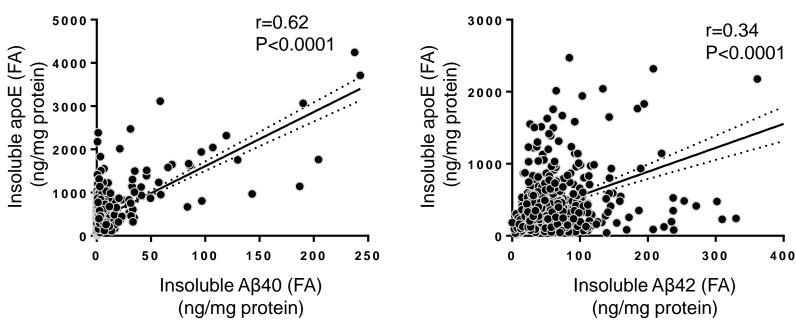

Brain region-dependent correlations between Braak stage and TJ proteins

Yamazaki et al., submitted

Brain region-dependent correlations between TJ proteins and AD-related molecules

	CLDN5	/CD31	OCLN/CD31	
	Synaptophysin	PSD95	Synaptophysin	PSD95
Αβ _{x-40}	-0.71 (0.4798)	-0.72 (0.4752)	-0.89 (0.3779)	-0.93 (0.359)
Aβ _{x-42}	-1.14 (0.2605)	-0.92 (0.3633)	-1.26 (0.2160)	-1.09 (0.2836)
Tau	-0.11 (0.9954)	0.30 (0.7650)	0.12 (0.9035)	0.43 (0.6667)
TJs/CD31	1.12 (0.2695)	2.43 (0.0201)	0.67 (0.5089)	2.04 (0.0491)

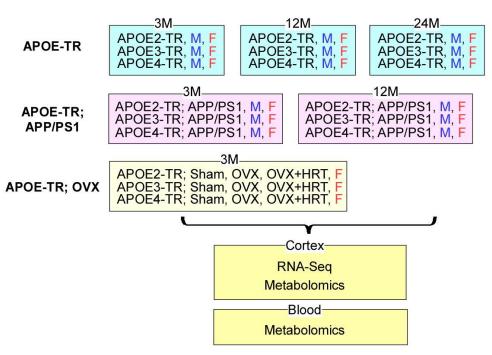
OLDNIE/ODO4


Human postmortem brain cohort 2: effects of *APOE4* and sex (Adjacent to brain sections for genomics and transcriptomics by Ertekin-Taner Lab)

Subject characteristics of AD brain samples

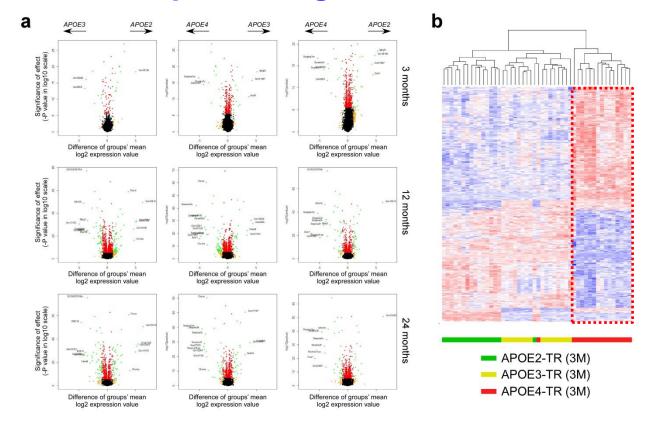
	APOE4 non-carrier		APOE4 carrier		
	Female	Male	Female	Male	Total
Case number	82	83	164	140	469
Age	82.20	77.06	81.12	79.22	82 (55, 100)
Braak stage					
IV	11	18	21	25	75 (16.0%)
V	34	38	48	49	169 (36.0%)
VI	37	27	95	66	225 (48.0%)
Thal phase					
2	1	1	1	0	3 (0.7%)
3	7	10	7	8	32 (7.6%)
4	4	8	20	11	43 (10.2%)
5	65	60	116	104	345 (81.6%)
CAA score					
Average	0.54 (0, 2.2)	0.7 (0, 2.2)	1.06 (0, 4)	1.16 (0, 3)	0.7 (0.2, 3)

Insoluble apoE is positively correlated with insoluble Aß

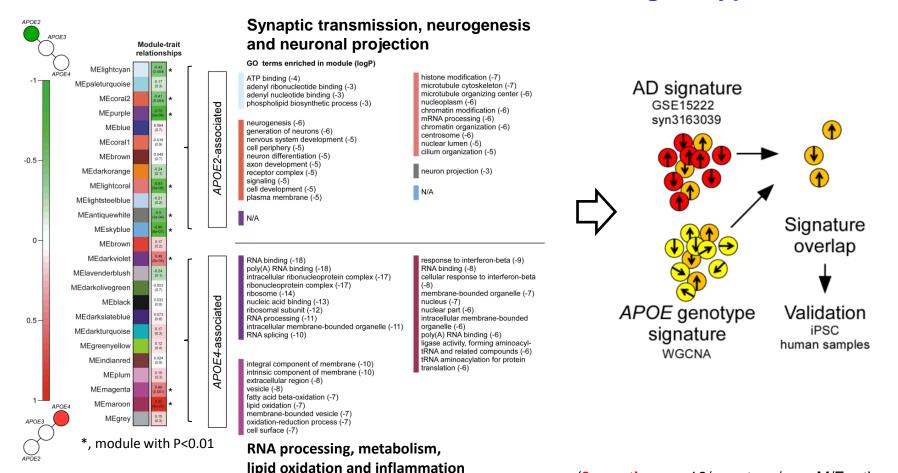

Tight junction molecule CLDN5 is negatively associated with apoE and Aβ42

		OE4 carrier	APOE4	carrier
	CLDN	5/CD31	CLDN5/CD31	
	r	p value	r	p value
ApoE TBS	-0.279	0.0003	-0.258	<.0001
ApoE TX	-0.199	0.0108	-0.155	0.0072
ApoE FA	-0.219	0.0049	-0.087	0.1324
Aβ40 TBS	-0.094	0.2294	-0.029	0.6193
Αβ40 TX	-0.079	0.3145	-0.006	0.9242
Aβ40 FA	-0.077	0.3271	-0.017	0.7675
Aβ42 TBS	-0.175	0.0254	-0.091	0.116
Aβ42 TX	0.135	0.0841	-0.101	0.0821
Aβ42 FA	-0.054	0.4921	0.021	0.7213

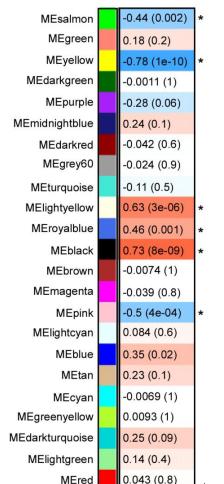
	Fer	male	Male	
	CLDN5/CD31		CLDN5/CD31	
	r	p value	r	p value
ApoE TBS	-0.264	<.0001	-0.309	<.0001
ApoE TX	-0.198	0.0018	-0.132	0.0508
ApoE FA	-0.151	0.0177	-0.146	0.0289
Aβ40 TBS	-0.052	0.4145	-0.064	0.3416
Α β 40 TX	-0.031	0.6236	-0.071	0.2879
A β 40 FA	-0.067	0.2931	-0.034	0.6085
Aβ42 TBS	-0.137	0.0313	-0.131	0.0505
A β42 TX	-0.063	0.3242	-0.044	0.5103
A β 42 FA	-0.065	0.307	0.012	0.8586


Identification of transcriptome/metabolome signatures associated with *APOE*, sex and aging using systems-based, non-targeted approaches

- 8 brain and serum samples/group/sex
- RNA-Seq
- Mayo Clinic Medical Genome Facility
- Metabolomics
- Duke University Medical Center-Dr. Rima Kaddurah-Daouk
- Network analysis
- WGCNA, multi-omics data integration and others (Mayo and Mount Sinai Bioinformatics Teams)



Volcano plots and hierarchical clustering of DEGs showing distinct transcriptomic signatures in *APOE4*-TR mice

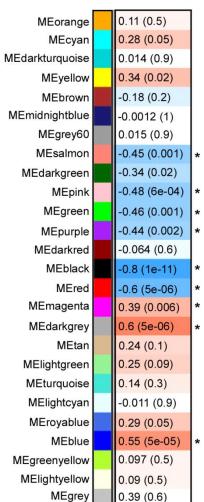


Bioinformatics identification of AD-relevant APOE genotype effectors

(3 months, n = 16/genotype/age, M/F ratio = 1)

Module-trait relationships

-0.35 (0.02)

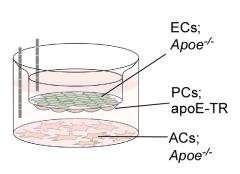

MEgrey

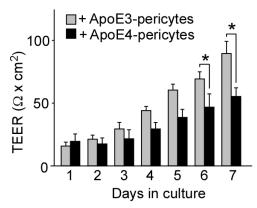
Immune response pathways are upregulated in APOE4-TR mice at 12 months of age

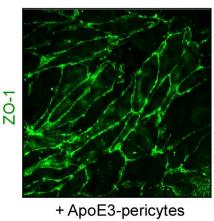
Rank	GO term ID	Term name
1	GO:0002376	immune system process
2	GO:0002682	regulation of immune system process
3	GO:0006955	immune response
4	GO:0002443	leukocyte mediated immunity
5	GO:0002699	positive regulation of immune effector process
6	GO:0050900	leukocyte migration
7	GO:0050776	regulation of immune response
8	GO:0002685	regulation of leukocyte migration
9	GO:0030595	leukocyte chemotaxis
10	GO:0002684	positive regulation of immune system process

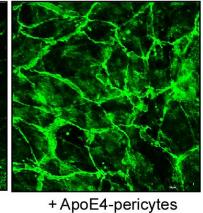
 $^{^{*}}$, module with P<0.01

Module-trait relationships

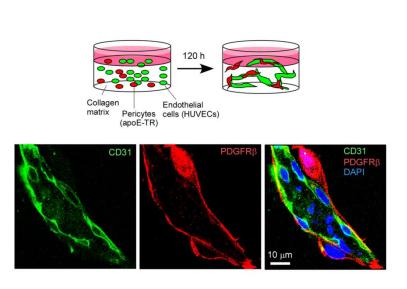

Immune response pathways are upregulated in APOE4-TR mice at 24 months of age

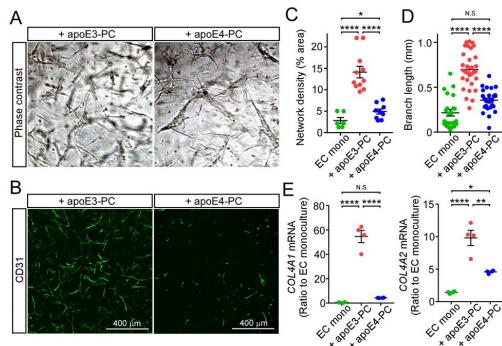

Rank	GO term ID	Term name
1	GO:0045087	innate immune response
2	GO:0006955	immune response
3	GO:0006952	defense response
4	GO:0098542	defense response to other organism
5	GO:0051707	response to other organism
6	GO:0009607	response to biotic stimulus
7	GO:0002376	immune system process
8	GO:0009615	response to virus
9	GO:0051607	defense response to virus
10	GO:0035456	response to interferon-beta


(24 months, n = 16/genotype, M/F ratio = 1)

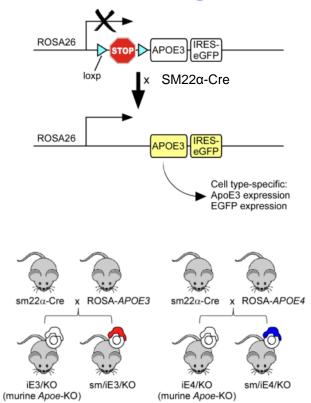

^{*,} module with P<0.01

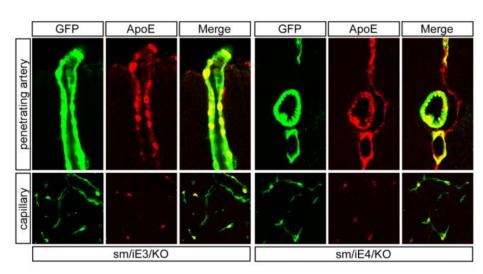

ApoE in cerebrovasculature: ApoE4-pericytes are less efficient in supporting endothelial barrier formation in an in vitro BBB model

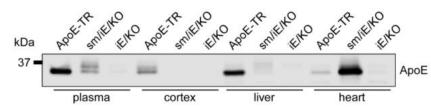




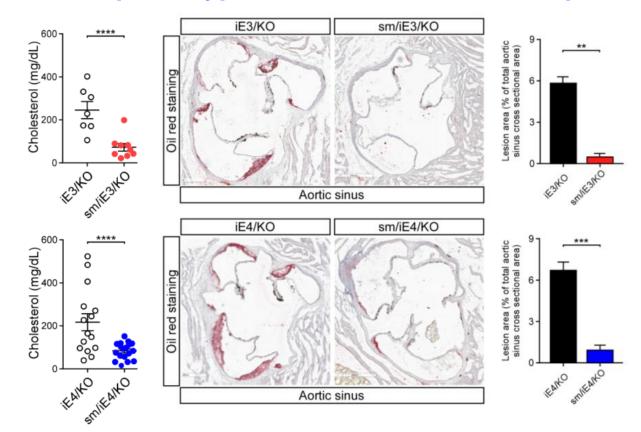
ApoE is abundantly expressed in vascular mural cells: SMC and pericytes

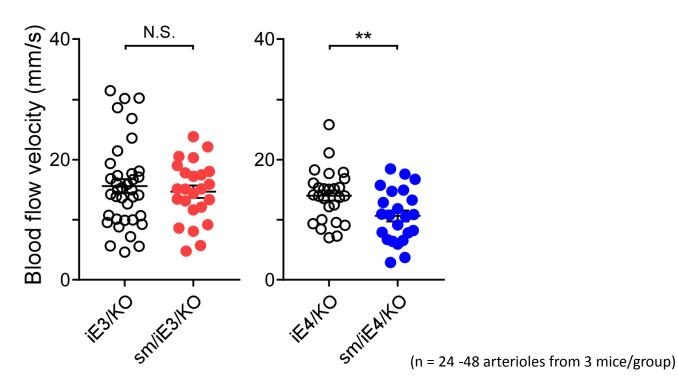

ApoE4-pericytes are less efficient in stimulating endothelial lumenogenesis in a 3-D co-culture system





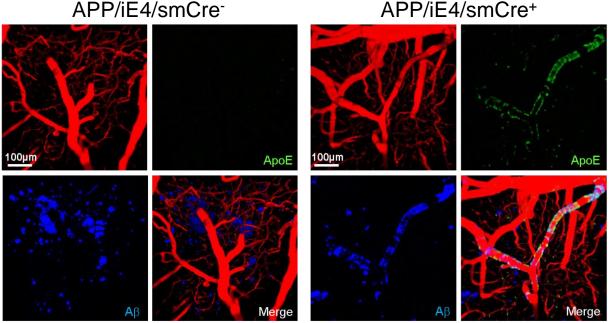
Conditional expression of human apoE3 or apoE4 in VMCs using SM22α-Cre in *Apoe*-KO background





Conditional expression of human apoE3 or E4 in VMCs rescues lipid and atherosclerotic phenotypes resulted from murine *Apoe* deficiency

Arteriole blood flow measured by in vivo 2-photon imaging is decreased in sm/iE4/KO mice



Conditional expression of apoE4 in VMCs leads to increased anxiety-like behavior and impaired spatial learning

Expression of apoE4 in vascular mural cells redistributed Aβ into the vasculature as CAA

- SM22α-Cre, vascularspecific in Apoe-KO background
- Bred to APP/PS1 amyloid model mice
- Two-photon images (collaboration with Betty Kim lab)
- Vascular apoE seeds CAA

Summary

Postmortem brain studies

- <u>APOE4</u> and <u>male</u> sex are correlated with increased severity of CAA in AD.
- Aβ40 and Aβ40/Aβ42 are selectively increased in AD brains with CAA in a sex- and APOE4dependent manner
- Endothelial tight junction markers are progressively decreased in AD.

Animal model omics studies

- Transcriptomic signature in APOE4-TR mice is distinct from that of APOE2-TR or APOE3-TR mice at different ages.
- AD relevance of APOE genotype-related signatures will be determined through a comparison with human transcriptomic datasets available from the AMP-AD Knowledge Portals.
- Identified AD-relevant "APOE effectors" will further be validated using iPSC and human samples (i.e., CSF, postmortem brains).

In vitro and in vivo functional studies

- ApoE in pericytes regulates endothelial expression of ECM in an isoform-dependent manner, which influences vasculogenesis in a 3-D culture system.
- Conditional expression of apoE4 in VMCs leads to an increased anxiety-like phenotype, impaired learning, and reduced arteriolar blood flow.
- Expression of apoE4 in vascular mural cells redistributed Aβ into the vasculature as CAA.

Data either are deposited or will be deposited shortly at https://www.synapse.org

Bu lab

Jenny Liu Yu Yamazaki

Na Zhao
Jing (Nancy) Zhao
Wenhui Qiao
Yuka Martens
Mary Davis
Cynthia Mencia
Josh Knight
Yuan Fu
Akari Yamazaki
Olivia Attrebi
Lucy Job

Hongmei Li

Yixing Chen

Yonghe Li

Lin Jia

Collaborators

Takahisa Kanekiyo (Mayo Clinic)
Nilufer Ertekin-Taner Lab (Mayo)
Yan Asmman (Mayo Clinic)
John Fryer (Mayo Clinic)
Dennis Dickson (Mayo Clinic)
Melissa Murry (Mayo Clinic)
Betty Kim (Mayo Clinic)
Xianlin Han (UTST)
Rui Chang (Arizona State U)
Bin Zhang (Mount Sinai)

Acknowledgements

Cure in Mind. Cure in Sight.

The new name for American Health Assistance Foundation

MetLife Foundation

OR MEDICAL RESEARCH IN ALZHEIMER'S DISEASE

thirty years of excellence

alz.org® alzheimer's % assoc

