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Variant Prioritization 

Systematic assessment of LOAD loci 

• Significance in multiple studies 

• Predicted effect on function 

• Human-mouse sequence conservation 

• Differential expression in AD 

• Noncoding variant effects 

 Ali Mortazavi, UCI BDMC 

 

Lipid homeostasis/vascular 

APOE, APOC1, 

MTHFR  

ABCA7 FERMT2, 
SORL1 
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Immune  
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RHBDF2 

PTK2B, 
PDGFA 

HLA-DRB5 

NCR2, 

PLXNC1 

Membrane/ECM 

WDR81 

CD2AP, INPP5D, MS4A4E, MS4A4A,  
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                            PCNT, PODXL, PSTPIP1,  

                                 SLC15A4, SLC16A3, 

                                  CEACAM1, SNX1 

   

 

Mitochondria MTHFDL1, TOMM40, 

SPG7 

Synaptic Signaling 

BIN1, SCL24A4, 

KCNN4, BCHE, 

SLC6A17, HTR4 
CLASP2 

KIF21B, ERC2, 
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Variant Summary Metrics 

Gene 
significant 
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SNP/gene 
replication 

pathogenic conserved 
differential 

expression in AD 
AD biology 

EXO5 ? 

CLASP2 
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MAPT 
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TGF-beta 
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Retromer 
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Cross-Species Phenotype Alignment 

‘Omics 

Neuropathology 

Brain Imaging 

clinical study 

cohorts 

mouse 

models 



Human Genomics of AD via AMP-AD 
Study N Brain Regions 

ROS/MAP 700 

 

 

 

 

dorsolateral prefrontal cortex 

Mt Sinai Brain Bank 300 

frontal pole 

superiortemporal gyrus 

parahippocampal gyrus 

inferiorfrontal gyrus 

Mayo Clinic 270 
cerebellum 

temporal cortex 

AMP-AD Knowledge Portal 



AMP-AD Gene Modules 

Ben Logsdon 
Sage Bionetworks 

 



Mouse Model Transcriptomes 

APOE-/- 

B6 APP/PS1 

APOEε4/ε4 

BIN1-/+ 

CD2AP-/+ 

CLU-/- 



Mouse Gene Modules via WGCNA 



Mouse Gene Modules via WGCNA 
neuroimmune 

cell death 

neurometabolism 

lipid metabolism 

immune 0.03 
0.02 
0.01 

FDR 



Human-Mouse Transcriptome Alignments 

synapse, 
neurosignaling 

inflammation, 
microglia 

astrocyte 
lipid processing, 

metabolism 



nanoString Neuropath Analysis 

HUMAN MODULE 

MOUSE GENE SET 

 

HUMAN-HUMAN OVERLAP 

HUMAN-MOUSE OVERLAP 

MOUSE-MOUSE OVERLAP 

synaptic, BNDF signaling 

cortex 

glycolysis, gluconeogenesis 

negative regulation of neuron apoptosis 

inflammation, complement 

microglia 

• 5xFAD, APOE4, and APOE4.TREM2R47H  

• Six months of age, whole brain 

• Three female replicates 

• Compared to 30 AMP-AD modules 



Integrating AMP-AD WGS Data 

Imported 1800+ whole genomes from AMP-AD 
Knowledge Portal 

• QC checks for quality scores, sample duplication, etc 

• LD pruning, MAF filtering 

• PCA for population structure 

• Comparison to 1000 Genomes to validate populations 



Human-Mouse Neuroimmune Similarity 

Human Variants 
 

SNPs in TREM2, 
CSF1R, etc. 

Human Module 
 

mRNA of TYROBP, 
TREM2, etc. 

Mouse Models 
 

ApoE-/-, ApoE4, 
APP/PS1 

Mouse Module 
 

mRNA of TYROBP, 
TREM2, etc. 

A M P – A D M O D E L – A D 

Ivory mouse module 

• Upregulated in ApoE-/-, ApoE4, 
APP/PS1 mice 

• Overlap with human immune 
modules from AMP-AD (p = 10-29) 

• Contains TYROBP, TREM2, C1QA, 
CSF1R 



Data Dissemination 

Data sharing online 

• Mouse genetic information: 
variant(s), strain background 

• Mouse phenotype data: 
RNA-seq, imaging, etc. 

• Preclinical data: standards, 
protocols, results 

• Preclinical results searchable 
on AlzPED 

 



UCI BDMC Activities 

1. Support variant identification and prioritization 
– Focus on non-coding variants 

– Coordinate with IU/Jax/SAGE 

 

2. Reanalyze publicly available data to support 

variant prioritization in mouse 

 

3. Analyze UCI RNA-seq data produced by center 

 

4. Submit RNA-seq results to Synapse 

 

 

 Focus on #2 and #3 today 



Using publicly available chromatin marks in mouse to 
guide element selection 

From Gosselin 2017 

PU.1 



To complicate matters, the Sonic Hedgehog limb enhancer is in the 

intron of another gene that it does not regulate 

Enhancers controlling gene expression can be very far 
from their gene 



(Maurano, 2012) 

Majority of GWAS SNPs map to open chromatin 
elements outside of gene coding sequences 



(Maurano, 2012) 

Distal GWAS SNPs mapping to cognate promoters 



Topologically associated domains defined by HiC 
identify interacting regions 

From Dixon, 2013 
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Some of the GWAS hits are on the same TAD – do they interact ? 



RNA SEQUENCING PIPELINE 

RNA 

TISSUE Tissue lyser 
homogenization 

Qiacube RNA 
extraction 

SMART-seq2 
construction of 

Illumina compatible 
libraries 

Wood lab 

Libraries sequenced 
on Nextseq500  

10-20 million reads 
per library 

Data analysis 

Mortazavi lab 



Mouse versus human ages 
• 2 month old BL6 mouse would 

correspond to a teenager 
 

• 8 month old BL6 mouse would 
correspond to a 35 year old human 
 

• 22 month old BL6 mouse would 
correspond to a 65 year old human 
 

• RNA-seq data in young mice  
early disruption and biomarkers 
 

• RNA-seq data in older mice  
better match to to LOAD ? 
 
 



CSF1R – an AMP-AD target 

CSF1R+/- het mice have: 
 

• Impaired memory 
 

• Normal brain size 
 

• Impaired myelination 
 

• Increased microglia 
 
 

(Chitu, 2016) 



Differential Expression Analysis 
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APP and APOE are significantly 
higher in the CSF1R +/- mice 

Frontal Cortex RNA, 8 months old 
 6 WT vs 6 CSF1R hets 



Pathway analysis flags AD among others 

David 
P-value 1.9E-3 
FDR  7.5E-2  



DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA Aβ 1-42 
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Humanizing Ab as a platform to introduce GWAS variants  
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Differential expression analysis of hAbKI vs WT by age 

 2 genotypes x 2 time-points x 2 sexes x 2 replicates = 32 mice 
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Differential expression analysis of hAbKI vs WT by genotype 

Talk by David Baglietto-Vargas  



DHCR7 is more highly expressed in hAbKI 

From Prabhu, 2016 

• Last enzymatic step in cholesterol 
synthesis in the adult brain 
 

• What is the cell type overexpressing 
Dhcr7 ? 



Upcoming UCI BDMC Activities 
1. Support variant identification and prioritization 

– Focus on non-coding variants 

– Coordinate with IU/Jax/SAGE 

 

2. Reanalyze publicly available data to support variant 

prioritization in mouse 

 

3. Analyze UCI RNA-seq data produced by center 

 

4. Submit RNA-seq results to Synapse 

 

5. Analyze single-cell RNA-seq data from aging WT and AD 

mouse models  


