MODEL-AD Bioinformatics and Data Management Core

Greg Carter (Head) The Jackson Laboratory Ali Mortazavi (Head) University of California, Irvine Lara Mangravite (Co-Head) Sage Bionetworks Andrew Saykin (Co-Head) Indiana University

Bioinformatics Overview

FOR LATE-ONSET ALZHEIMER'S DISEAS

Variant Prioritization

Systematic assessment of LOAD loci

- Significance in multiple studies
- Predicted effect on function
- Human-mouse sequence conservation
- Differential expression in AD
- Noncoding variant effects
 - Ali Mortazavi, UCI BDMC

Variant Summary Metrics

Gene	significant association	SNP/gene replication	pathogenic	conserved	differential expression in AD	AD biology
EXO5	\checkmark		\bigotimes	\checkmark	\checkmark	?
CLASP2	\checkmark		\checkmark	\checkmark	Ç∕	Reelin Signaling
MS4A6E	\checkmark		\bigotimes	\bigotimes	?	?
SORL1	\checkmark		\checkmark	\checkmark	Ţ>	Retromer Trafficking
PLCG2	\checkmark	8	\checkmark	\checkmark		?
MAPT	\checkmark		\bigotimes	\bigotimes	\otimes	Tau pathology
MTMR4	\checkmark		\checkmark	\checkmark	¢	TGF-beta signaling
SHC2		$\mathbf{\mathbf{S}}$	\checkmark	\bigotimes	\bigotimes	?

Cross-Species Phenotype Alignment

Human Genomics of AD via AMP-AD

INDIANA UNIVERSITY

AMP-AD Gene Modules

Ben Logsdon Sage Bionetworks

Mouse Model Transcriptomes

PC 1 (13.5%)

Mouse Gene Modules via WGCNA

Mouse Gene Modules via WGCNA

Human-Mouse Transcriptome Alignments

nanoString Neuropath Analysis

Integrating AMP-AD WGS Data

Imported 1800+ whole genomes from AMP-AD Knowledge Portal

- QC checks for quality scores, sample duplication, etc
- LD pruning, MAF filtering
- PCA for population structure
- Comparison to 1000 Genomes to validate populations

Human-Mouse Neuroimmune Similarity

Ivory mouse module

- Upregulated in ApoE^{-/-}, ApoE4, APP/PS1 mice
- Overlap with human immune modules from AMP-AD (p = 10⁻²⁹)
- Contains TYROBP, TREM2, C1QA, CSF1R

AMP - AD

INDIANA UNIVERSITY

Data Dissemination

Data sharing online

- Mouse genetic information: variant(s), strain background
- Mouse phenotype data: RNA-seq, imaging, etc.
- Preclinical data: standards, protocols, results
- Preclinical results searchable on AlzPED

UCI BDMC Activities

- 1. Support variant identification and prioritization
 - Focus on non-coding variants
 - Coordinate with IU/Jax/SAGE
- 2. Reanalyze publicly available data to support variant prioritization in mouse
- 3. Analyze UCI RNA-seq data produced by center
- 4. Submit RNA-seq results to Synapse

Using publicly available chromatin marks in mouse to

guide element selection

Enhancers controlling gene expression can be very far from their gene

INDIANA UNIVERSITY

human Shh enhancer point mutations

AGAGGAGGA CAAAGATTT ATATGTTTC SATCCTGTGTC CCTTGTACT CTATTTTATG

To complicate matters, the Sonic Hedgehog limb enhancer is in the interval to the sonic hedgehog limb enhancer is in the sonic hedgehog linb enhancer is in the sonic hedgehog

Majority of GWAS SNPs map to open chromatin elements outside of gene coding sequences GWAS SNPs not in GWAS SNPs in DHSs C c chris:3876700 chr3:3876700 chr3:3876700 chr3:39555000

University of California. Irvine

Distal GWAS SNPs mapping to cognate promoters

(Maurano, 2012)

Topologically associated domains defined by HiC identify interacting regions

Some of the GWAS hits are on the same TAD – do they interact ?

Jackson

INDIANA UNIVERSITY

RNA SEQUENCING PIPELINE

Mouse versus human ages

- 2 month old BL6 mouse would correspond to a teenager
- 8 month old BL6 mouse would correspond to a 35 year old human
- 22 month old BL6 mouse would correspond to a 65 year old human
- RNA-seq data in young mice → early disruption and biomarkers
- RNA-seq data in older mice → better match to to LOAD ?

CSF1R – an AMP-AD target

CSF1R+/- het mice have:

- Impaired memory
- Normal brain size
- Impaired myelination
- Increased microglia

(B)

Positive role

Survival and quiescence of microglia

Differentiation of neurons and glial cells

Neuronal survival

Improved neurogenesis; clearance of myelin debris and remyelination (GCL)

Negative role

Expansion of demyelinating $M\Phi$ and microglia; schwann cell dedifferentiation (CMT1X)

Increased myeloid cells and autoimmune responses (EAE)

Glioma progression

(Chitu, 2016)

Differential Expression Analysis

Pathway analysis flags AD among others

University of

California, Irvine

Humanizing A β as a platform to introduce GWAS variants

Alzheimer's	O1-01 Development of New Models and Analysis Methods:	01-01-04 Haβ-KI: A Knock-in Mouse
Association	Novel Model Systems to Study Dementia, Sunday, July 22, 2018:	Model for Sporadic Alzheimer's
International	8:00 AM - 9:30 AM, McCormick Place, Room - 184	Disease
Conference (AAIC)		
O #23414		

Differential expression analysis of hA β KI vs WT by age

2 genotypes x 2 time-points x 2 sexes x 2 replicates = 32 mice

INDIANA UNIVERSITY

Differential expression analysis of hA βKI vs WT by genotype

Talk by David Baglietto-Vargas

DHCR7 is more highly expressed in hAbKI

The Jackson

From Prabhu, 2016

۲

۲

Upcoming UCI BDMC Activities

- 1. Support variant identification and prioritization
 - Focus on non-coding variants
 - Coordinate with IU/Jax/SAGE
- 2. Reanalyze publicly available data to support variant prioritization in mouse
- 3. Analyze UCI RNA-seq data produced by center
- 4. Submit RNA-seq results to Synapse
- 5. Analyze single-cell RNA-seq data from aging WT and AD mouse models

