Identification of Disease Insights Through Consortium-Wide Meta-Analyses

Ben Logsdon, PhD Director of Neurodegenerative Research, Sage Bionetworks on behalf of the AMP-AD analytic working groups

SageBionetworks

powered by Synapse

Broadcasting and Communication

Content Management and Compute Services

Interpretation

3⁰ Independent Validation

2⁰ Open Exptl Tools

1⁰ Team Validation

RNA Sequencing

Source	Brain Regions	Library Preparation	Read Length	Depth of Sequencing
<u>ROSMAP</u> (n=700)	Dorsolateral prefrontal cortex	Poly-A Selection	101 bp PE	50-100M per library
<u>MSBB</u> (n=300)	Frontal Pole, Superiortemporal Gyrus, Parahipocampal Gyrus, Inferiorfrontal Gyrus	RiboZero	100 bp SE	120M per library
<u>MAYO</u> <u>RNASEQ</u> (n=270)	Cerebellum Temporal Cortex	Poly-A Selection	100 bp PE	120M per library

RNAseq Processing

Gene level counts generated using the HTSeq algorithm

Alignment (STAR 2.5.1b)

Covariate Analysis Workflow

Thanneer Perumal, Sage Bionetworks

Making genomic data useful across studies requires a lot of collaborative work

Thanneer Perumal (Sage), Mingui Wang (MSSM), Cory Funk (ISB), Mariet Allen (Mayo), Kristen Dang (Sage), Chris Gaiteri (Rush), Phil Ebert (Eli Lilly), Yuhao Lin (Eli Lilly), Jishu Xu (Broad)

Identifying robust AD transcriptomic signatures

Conserved AD Associated networks, modules, and DEGs

Analysis strategy

Multi method coexpression network analysis

Methods Sage Team metanetworks Consensus DLPFC Modules and **ISB** Team Networks FP TRENa STG Reprocessed **Broad-Rush Team** PHG Data (Study x SpeakEasy Comparative **Brain Region**) IFG Module Analyses CER **Emory Team** (e.g. ROSMAP DLPFC, WGCNA MSSM FP, Mayo TCX, TCX etc...) **MSSM** Team -0.1 -0.075 -0.05 -0.025 0 Megena

AD Transcriptomic Differentially Expressed coExpression Modules (DEEMs)

Differential Expression Meta Analysis

Enrichment for AD signatures

category

Individual Modules

DEG Brain Region Specific

Individual DEG Modules

Zhang et al. 2013

Aggregate Brain Specific Modules

DEG Meta Analysis

AD Endophenotypes (Modules)

AD endophenotypes show strong cell type specificity

Known AD signatures localize in predominantly glial and neuronal

AD Clanatura

AD endophenotypes show strong sex specificity

Differential Expression: AD vs Control (Sex Specific)

Model:

Gx = BrainRegion.Diagnosis.Sex + Study + RIN + RIN² + PMI + AOD + Batch + PCT_RIBOSOMAL_BASES + PCT_INTRONIC_BASES + PCT_CODING_BASES + PCT_PF_READS_ALIGNED + PCT_INTERGENIC_BASES + (1|Individual_ID)

	Region	# of Genes (at FDR of 0.05 and fold-change of 1.2)				
Source		Female		Male		
		DOWN	UP	DOWN	UP	
ROSMAP	DLPFC	325	352	92	30	
<u>MSBB</u>	FP	4	0	24	20	
	IFG	2 MU		3	3	
	PHG	587		198	121	
	STG	DIG	псқ	1	1	
<u>MAYO</u>	CER	2461	2199	1250	1151	
	TCX	3060	2635	1719	1955	

Thanneer Perumal

Genetics and Sex Interaction in AD • We computed a Genomic Risk Score (GRS) based on the IGAP SNPs in ROSMAP from imputed genotype data

- We found significant (adjusted p-value: 1x10⁻⁴) sex by GRS interaction associations with DLPFCbrown (oligodendrocyte myelinating cells enriched module) eigengenes.
- We also found significant (p-value: 2.9x10-3) sex by GRS interaction association with Braak and CERAD score in ROSMAP.

Enrichment in Human Modules

139 mouse model Differentially Expressed Genes (DEGs) in Brain

Joshua Shulman & Zhandong Liu, **Baylor College of Medicine** Cross-species working group

Mouse Knockout Models in MODEL-AD

Human and mouse modules overlap

STGyellow FPyellow TCXbrown Protein maintenance, neurometabolism **C**BEblue

Slide courtesy of Greg Carter

- **Disease Processes**
- Patient Sub-Types lacksquare
- Heterogeneity of disease lacksquare

specific signatures of disease

Enrichment in Human Modules

139 mouse model Differentially Expressed Genes (DEGs) in Brain

Questions?

- Also, we're hiring! We have two positions open a postdoc in computational neurodegenerative research and a research associate in genomic workflows.
- Please contact me ben.logsdon@sagebionetworks.org - if interested

Acknowledgements

Sage Bionetworks Phil Snyder **Yooree Chae** Solly Sieberts Kristen Dang Thanneer Perumal Lara Mangravite

Columbia-Broad-Rush Chris Gaiteri Lei Yu Jishu Xu David Bennett Phil De Jager

Mayo-ISB-UFL

Mariet Allen Cory Funk Minerva Carrasquilo Nathan Price Steve Younkin Nilufer Ertekin-Taner

MSSM

Minghui Wang Noam Beckmann Sam Gandy Vahram Haroutunian Jun Zhu Koichi lijima Scott Nogale Bin Zhang Eric Schadt

Emory **Eric Dammer** Duc Duona James Lah Ranjita Betarbet Joshua Shulman Vivek Swarup Madhav Thambisetty Tom Montine Juan Troncoso **Daniel Geschwind** John Trojanowski Allan Levev

Harvard-MIT Tao Lu Fan Gao Alison Mungenast **Bruce Yankner** Li-Huei Tsai

AbbVie Gyan Srivastava Viswanath Devanarayan

Biogen Ayla Ergun Sally John GSK Hongkang Mei Xiaoyan Zhong **Jill Richardson** Feng Yu **Guofeng Meng** Fiona Kelly

Duke Jessie Tenenbaum Rima Kaddurah Daouk

Lilly David Airev David Collier Michael O'Neill Hong Wang Philip Ebert Jeffrey Dage Laura Nisenbaum

Columbia-SUNY

Jose Luchsinger Adam Brickman Herman Moreno Sergio Angulo Luna Buitrago

Mayo

Guojun Bu Nilufer Ertekin-Taner Mariet Allen Minerva Carrasquillo Takahisa Kanekyo

Emory (M2OVE-AD) Ihab Hajjar Arshed Quyyumi

Harvard Steven Greenberg Brian Bacskai

Duke -UPenn Rima Kaddurah Daouk Mitchel kling Arshed Quyyumi

IU-Jax-Sage (MODEL-AD) Bruce Lamb Greg Carter Gareth Howell Paul Territo Mike Sasner Stacey Rizo **Christoph Preuss** Asli Uvar

Funding We would like to graciously thank the NIA for their financial support: U01 AG046152, U01 AG046139, U01 AG046161, U01 AG046170

Ranking system for Alzheimer's disease drivers

Genetic Association with AD/AD related

Top Ranked Genes

gene	adDriverScore	external_gene_name							
ENSG0000066336	6.894854674	SPI1							
ENSG00000168918	6.539246527	INPP5D		_					
ENSG00000120885	6.24964901	CLU		8 7			_		,
ENSG00000123338	5.924403628	NCKAP1L		0					
ENSG00000197943	5.829814658	PLCG2		8					
ENSG00000142347	5.732757074	MY01F		20					
ENSG00000105281	5.540961722	SLC1A5		。					
ENSG00000183255	5.505479877	PTTG1IP		ĝ -					
ENSG00000160255	5.497834261	ITGB2	c	×					
ENSG0000095970	5.349427681	TREM2	nen	8 -					
ENSG00000160219	5.173553159	GAB3	lbə	ы					
ENSG0000108798	5.157684373	ABI3	Ē	8					
ENSG00000128604	5.025162817	IRF5		- 3					
ENSG0000019582	4.975204454	CD74							
ENSG00000138964	4.875343453	PARVG		100(
ENSG00000204257	4.865171894	HLA-DMA							
ENSG00000134516	4.819653436	DOCK2							
ENSG00000129667	4.721231461	RHBDF2		-					
ENSG0000023892	4.50325394	DEF6			-4	-2		()

AD Driver Score

Re-prioritized genes based on score • We select the top 1000 scored genes from the model to screen for variants with evidence in IGAP stage 1+2.

- We identify 667 variants of which 404 pass a Bonferroni correction ($P < 7x10^{-5}$).
- We identify six new genomic regions associated with Alzheimer's disease: HBEGF, RABEP1, DNAH17, C1S, SNX1, and PFKFB3.

Modules are rich in disease relevant pathway information 80 60 WNT signaling, 40 Aquaporin mediated transport 20 Receptor Complexes tsne2 0 -20 Cholesterol, BMI, T2D, CAD Genetics -40-60Synapse -80 Assembly Axon Guidance -100-50tsne1

Signaling by PDGF, NGF, FGFR

