

M²OVE AD

Interdisciplinary Research to Understand the Interplay of Diabetes, Cerebrovascular disease and Alzheimer's Disease (DiCAD; RF1AG051556)

Adam Brickman, PhD (CUMC)
José A. Luchsinger, MD, MPH (CUMC)
Herman Moreno, MD, PhD (SUNY Downstate)

Overarching hypothesis and approach

• HYPOTHESIS:

Hyperglycemia causes both CVD and AD which interact and mediate the association with cognitive impairment

APPROACH:

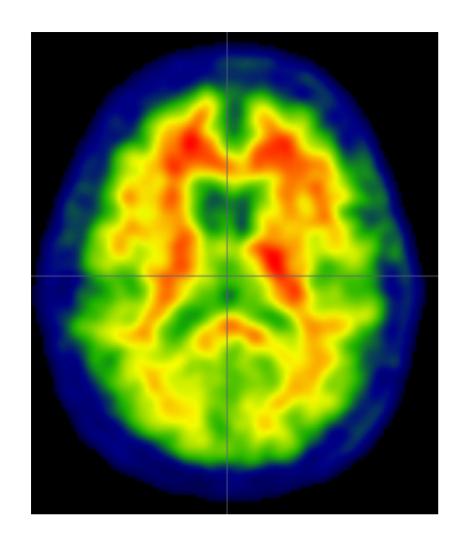
To conduct complementary human and mice studies to understand mechanisms

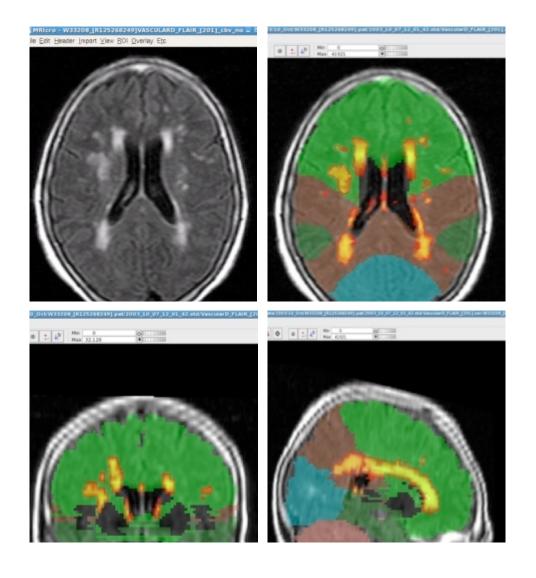
Primary aim. To examine the association of diabetes with the interplay of AD and CVD in humans and mice.

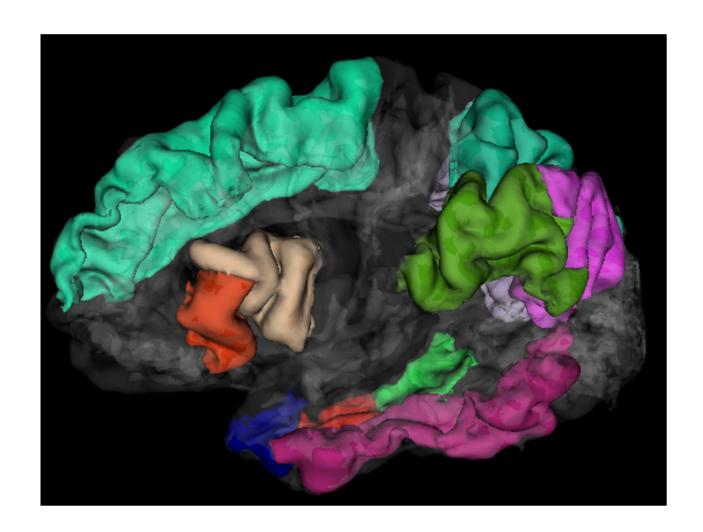
Humans

- Cohort study of 200 late middle aged adults
- Metabolic profile: OGTT, HbA1c, insulin, extended panel
- Cognition: with NS battery
- AD pathology: Amyloid and Tau PET
- Cerebrovascular disease: MRI
- Physiology: brain DMN on MRI
- Discovery: Metabolomics, proteomics, genomics

• Mice

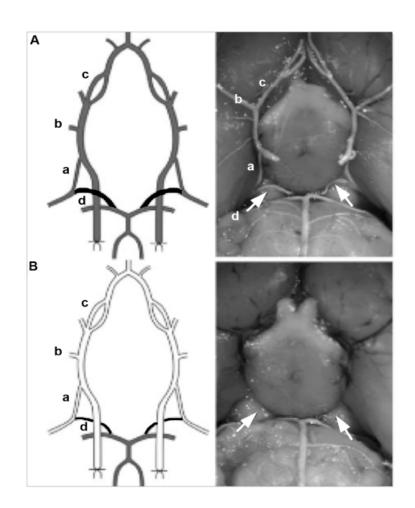

- Experiments in young and old mice (db/db, db/+, APP/PS1, C57, mixed)
- Metabolic profile: HbA1c, glucose, insulin, extended panel
- Cognition/behavior: PPA, APA, NOR
- AD pathology: IHC/histology
- Cerebrovascular disease: tMCAo
- Physiology: EP profile EC-HC
 - Metabolomics, proteomics

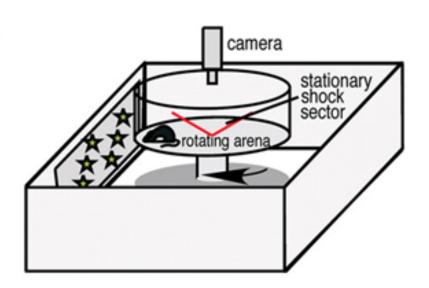

COLUMBIA UNIVERSITY

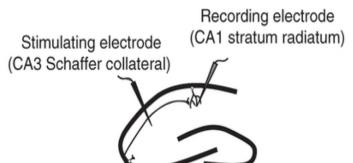

SUNY DOWNSTATE

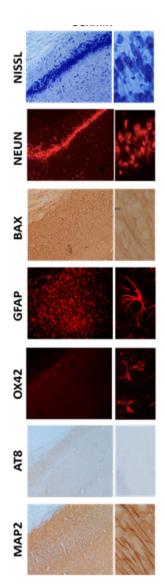
Human sample characteristics

Variable	Value
Number of participants	139
Age in years	63.3 ± 4.3
Women	74.8%
Education in years	10.0 ± 3.8
ΑΡΟΕ-ε4 %	27.4%
HbA1c in %	$\textbf{6.1} \pm \textbf{1.4}$
Normal glucose tolerance %	44.6%
Pre-diabetes % %	30.9%
Undiagnosed diabetes	4.3%
Known diabetes %	22.3%








Mouse models

- Db/Db mice, Db/WT
- J20, APP/PS1, C57
- Mixed Db APP/PSI
- Young and old
- With and without stroke

Future directions

- Conduct metabolomics, lipidomics in human sera and in mouse sera, brain, liver, gut in coordination with the AD metabolomics consortium
- Conduct proteomics and genomics in collaboration wiht M²OVE-AD AND AMP-AD partners
- Examining insulin resistance and adipokines

Data sharing

- All data uploaded in Synapse
- Biospecimen repository

Conclusions

- Hyperglycemia seems to increase vascular disease and neurodegeneration but its relation with amyloid burden needs further exploration
 - Examination of tau pending
- Sex is an important modifier that needs to be examined
- AD and neurodegeneration have important metabolic signatures that require further study

Acknowledgements

- Duke University
 - Rima Kaddurah-Daouk
- Rush University
 - Chris Gaiteri
- Columbia University
 - William Kreisl
 - Qulamreza Razlighi
 - Phil DeJager
- Hebrew Home at Riverdale
 - Jeanne Teresi
- SUNY Downstate
 - Frank Barone

- NIH
 - Suzana Petanceska
- SAGE
 - Lara Mangravite
 - Mette Peters